To enter text, click in the box and type your response. If a box already contains an entry select the entry and type the replacement. You can use the **tab** key to move from one field to the next. To select a check box, click in the box or type an x. #### **GENERAL INFORMATION** | Permitte Name | Castle Gate Holding Company | |---------------------------------|------------------------------------------------------------| | Mine Name | Castle Gate Mine | | Operator Name | | | (If other then permittee) | | | Permit Expiration Date | December 24, 2004 | | Permit Number | C/007/006 | | Authorized Representative Title | Johnny Pappas, Sr. Environmental Engineer | | Phone Number | (435) 472-4741 | | Fax Number | (435) 472-4782 | | E-mail Address | jpappas@rag-american.com | | Mailing Address | P.O. Box 30, 847 Northwest Highway 191, Helper, Utah 84526 | | Resident Agent | C.T. Corporation | | Resident Agent Mailing Address | 50 West Broadway, Salt Lake City, Utah 84101 | | Number of Binders Submitted | Two | # **IDENTIFICATION OF OTHER PERMITS** Identify other permits that are required in conjunction with mining and reclamation activities. | Permit Type | ID Number Description | | Expiration Date | | | |-----------------------|-----------------------|----------------|-----------------|--|--| | MSHA Mine ID(s) | 4200165 | Legal Identity | | | | | | 4201202 | Legal Identity | | | | | MSHA Impoundment(s) | N/A | | | | | | NPDES/UPDES Permit(s) | UTG040012 | UPDES Permit | April 30, 2003 | | | | PSD Permit(s) (Air) | N/A | | | | | | Other | | | | | | | | | | | | | | | | | | | | | | | | | | | | List the certified periodically submitted or currently on file with | d inspec<br>t the Di | vision. | Specify when | ired by the rules an<br>ther the information | nd udder the approved plan that must be a is included as Appendix A to this report | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------|---------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------| | _ | Require<br>Yes ] | <b>d</b><br>No | Included or o | n file with DOGM<br>On File | Comments | | Excess Spoil Piles Refuse Piles Impoundments | | | | | Pond 10 recclaimed in conjunction | | Other | | | | | with Adit No. 1 | | REPORTING OF OT List other techn periodically submitted to or currently on file with Technical Data: | ical dat<br>to the L | ta and i<br>Division<br>vision. | information a<br>a. Specify who | s required under th | e approved plan, which must be on is included as Appendix B to this report M Comments | | Climatological Subsidence Monitoring Vegetation Monitoring Raptor Survey Soils Monitoring Water Monitoring First quarter Second quarter Third quarter Fourth quarter Geological / Geophysical Engineering Non Coal Waste / Abandoned Underground Equipment* Other Data | | | | | | | Groundwater Study | | | | | Courtesy Copy for Informational Purposes Only | | ) | | | | | | Page 2 2002 ANNUAL REPORT <sup>\*</sup>Reminder: If equipment has been abandoned during 2002, an amendment must be submitted that includes a map showing its location, a description of what was abandoned, whether there was any hazardous or toxic materials and any revision to the PHC as necessary. | 2002 ANNUAL REPORT | | | | | Page 3 | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------| | LEGAL, FINANCIAL, CO<br>Change in administre<br>information found in the mine<br>and update the legal, finance<br>Provide the department of Co<br>to ensure that the information<br>regarding land ownership, in<br>necessary to update information<br>statements, audits or workship<br>information is currently on p | ation or corporning and reclanial, compliance commerce, annual provided in the case acquisition required in the case which may | rate structure c<br>nation plan. The<br>and related in<br>ual Report of C<br>the plan is curr<br>ns, legal result<br>n the mining an<br>y be required to | an often bring about the Division is Reques formation in the plan officers, or other equient. Provide any othes from appeals of vioud reclamation plan on meet bonding requi | necessary change<br>ting that each per<br>as part of the and<br>valent information<br>er change as nece<br>lations, or other c<br>Include and certi<br>rements. Specify | mittee review<br>nual report.<br>n as necessary<br>ssary<br>hanges as<br>fied financial | | Legal / Financial Update | Required<br>Yes No | <b>Included or o</b> Included | on File with DOGM On file | Comments | | | Department of Commerce,<br>Annual Report Officers<br>Other | | | | | | | INE MAPS Copies of mine maps the Division as Appendix D map copies shall be made in Division shall keep mine ma | to this report in<br>accordance w | n accordance w<br>ith 30 CFR 75. | | of R 645-301-525 | .270. These | | Map Number(s) | Map Title/ De | escription | | | Confidential<br>Yes No | | | | | | | | | _ | 2002 ANNUAL REPORT Page 4 | | | | | | | | | |---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--| | | OTHER INFORMATION Please provide any comments of further information to be included as part of the Annual Report. Any other attachments are to be provided as Appendix E to this report. If information is submitted as a group rather then by individual mine, please identify each of the mine's data in the list below. | | | | | | | | | | | Additional attachment to this report? Yes \( \sum \) No \( \sum \) | | | | | | | | | | | Reclamation activities performed in 2002 at Adit No. 1, Hardscrabble Canyon, and Sowbelly Canyon | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | # APPENDIX A # **Certified Reports** Excess Spoil Piles Refuse Piles Impoundments As required under R645-301-514 **CONTENTS** NONE #### APPENDIX B ### **Reporting of Technical Data** Including monitoring data, reports, maps, and other information As required under the approved plan or as required by the Division In accordance with the requirement of R645-310-130 and R645-301-140 #### **CONTENTS** Potential for Water Storage in Abandoned Mine Workings in the Castle Gate Area (Courtesy Copy for Information Purposes Only) # Potential for Water Storage in Abandoned Mine Workings in the Castlegate Area, Carbon County, Utah Cyprus Plateau Mining Corporation, Price, Utah 15 June 1999 Prepared by: David A. Herron Staff Hydrogeologist Erik C. Petersen, P.G. Senior Hydrogeologist Alan L. Mayo, Ph.D. Principal Mayo and Associates, LC 710 East 100 North Lindon, Utah 84042 801-796-0211 # Potential for Water Storage in Abandoned Mine Workings in the Castlegate Area, Carbon County, Utah #### **Executive Summary** For mining in Cyprus Plateau Mining Corporation's Willow Creek Mine to be successfully completed, it will be necessary to pump and dispose of an estimated 1.5 billion gallons of water from abandoned mine workings underlying the Willow Creek Mine. The purpose of this investigation is to estimate the potential for storage of this water in abandoned mine workings in the Castlegate area west of Highway 6. The information required to make calculations of available open mine volumes includes an accurate description of the mine geometry (i.e., the mined area and the extracted coal thickness), the interconnectedness of mined areas, the changes which may occur in mine workings through time after mining is completed (i.e., caving and subsidence), and the presence or absence of water in the abandoned mine workings prior to any potential injection. Most of this information was obtained from old mine working maps obtained from CPMC. In many instances, information essential for mine volume calculations was not available. In these instances, required parameters were estimated based on discussions with CPMC personnel, knowledge of commonly utilized mining practices, and extrapolation of data from nearby locations where data are available. Because of the limited and incomplete nature of the data, it is not possible to determine with certainty the mine volumes available for water storage. The values presented here should, therefore, be considered as best estimates and should not be taken as absolute values. The results of the mine volume calculations suggest that between 0.720 and 2.490 billion gallons of water can be stored in the abandoned mine workings west of Highway 6. To inject this volume of water into the abandoned mine workings, more than one injection site will be necessary. It is estimated that between 0.720 and 1.930 billion gallons of water can be injected into the old workings at a single injection site. To accommodate this water, the abandoned mine workings will be filled to an elevation of 6,300 feet. Much of the uncertainty in these calculations results from the lack of information regarding the amount of water already in the old mine workings prior to any injection. It is recommended that a monitoring well be constructed in Bear Canyon which will allow the determination of the existing water level in the Royal/New Peerless Mine complex. This well may also be used to monitor water levels as injection activities progress and as a means to measure water quality. Monitoring of the Crandall Canyon Shaft is also recommended to provide water quality and water level information. # TABLE OF CONTENTS | 1.0 INTRODUCTION | | |-----------------------------------------------------------------------|----| | 2.0 PROJECT OVERVIEW | 4 | | 2.1 Purpose of investigation | 4 | | 2.2 Methods of investigation | 4 | | 2.2.1 Mine Maps | 4 | | 2.2.2 Volume Calculations | 4 | | 3.0 DESCRIPTION OF THE LEASE AREA | 6 | | 4.0 GEOLOGIC SETTING | 7 | | 4.1.1 Blackhawk Formation | 7 | | 4.1.2 Mancos Shale | 7 | | 4.1.3 Structure | 8 | | 5.0 VOLUME ASSUMPTIONS AND MINE INTERCONNECTIONS | 9 | | 5.1 Assumptions Used in Mine Volume Calculations | 9 | | 5.2 Mine Interconnections and Overflows | 15 | | 6.0 MINE VOLUME RESULTS | | | 6.1 Mine Volume Results | | | 7.0 IMPACTS OF STORING WATER IN OLD WORKINGS | | | 8.0 CONCLUSIONS | | | 9.0 RECOMMENDATIONS | | | 10.0 REFERENCES CITED. | | | LIST OF FIGURES | | | 1 Regional map for Willow Creek study area | 2 | | 2 Location of Portals of Abandoned Mines Considered for Water Storage | 3 | | 3 Fracturing and Subsidence Above Longwall Panel | 13 | | 4 Zones of Potential Water Seepage | | | LIST OF TABLES | | | | | | 1 Coal Recovery and Volume Loss | | | 2 Summary of Volume Calculation Results | 20 | | 3 Potential Volume for Storage of Additional Water | | | 4 Proposed locations for monitoring and injection wells | | #### LIST OF PLATES - 1 D-Seam Workings - 2 Sub-3-Seam Workings - 3 A-Seam Workings - 4 All Mine Workings - 5 Royal / New Peerless Volume Calculation Spreadsheet - 6 Castlegate #3 Volume Calculation Spreadsheet - 7 Spring Canyon #5 Volume Calculation Spreadsheet - 8 Spring Canyon #1 Volume Calculation Spreadsheet - 9 Topography Below 6,300 - 10 Recommendations #### 1.0 INTRODUCTION Cyprus Plateau Mining Corporation (CPMC) operates the Willow Creek Mine which is located near Helper, Utah (Figure 1). CPMC holds additional coal leases west of Highway 6 in Price Canyon and plans to mine these leases in the future. Shortly after coal mining in the Willow Creek Mine commenced, it was determined that the old Castlegate #2 Mine workings are flooded with an estimated 1.5 billion gallons of water. These workings are located in the K-Seam, which lies approximately 80 feet below the Willow Creek Mine workings in the D-Seam. The water in the Castlegate #2 Mine must be removed and disposed of before mining in the Willow Creek Mine can be safely completed. Several methods for disposal of the old mine waters have been investigated by CPMC. These include 1) treatment of the water and discharging it into the Price River drainage, and 2) pumping the water into one or several of the abandoned mine workings west of Highway 6 (Figure 2). The feasibility of the latter method is the topic if this investigation. Figure 1 Regional Map for Willow Creek Study Area Figure-1-Regional-Map-B.cdr Mayo and Associates, LC June 7, 1999 Figure 2 Location of portals of abandoned mines considered for water storage. #### 2.0 PROJECT OVERVIEW #### 2.1 Purpose of investigation The purpose of this investigation is to examine the feasibility of injecting waters from the dewatering of the Castlegate #2 Mine workings beneath the Willow Creek Mine into abandoned mine workings west of the Price River. This investigation includes 1) the evaluation of the potentially open mine volumes available to receive injected water, and 2) the likely fate of the water after it has been pumped into the abandoned mine workings. #### 2.2 Methods of investigation #### 2.2.1 Mine Maps All available maps of old mine workings in the Willow Creek and adjacent areas were obtained from CPMC and reviewed. The original mine working maps used in this investigation were 1 inch = 2,000 feet scale or greater. Many of the original mine maps are nearly 100 years old and many were hand drawn. The mine-working maps were used to determine the geometry of the old mine workings, the elevations of the mine workings, and the thickness of the coal seams and/or height of coal extracted in the old mines. Calculations of mine volumes available for injection were conducted using the various mine maps provided from CPMC. Mine workings shown on the old maps were digitized into electronic AutoCAD<sup>TM</sup> file format. #### 2.2.2 Volume Calculations Electronic maps of each mine were carefully analyzed to determine the potential available open volume of each mine and the locations of potential spillover points. Individual mines were divided into small blocks based on proximity and apparent mining style. Care was taken to digitize blocks according to the apparent style of mining, because several distinct mining styles were apparent from the maps and the style of mining affects the percentage of the total coal that was recovered in any given area. To simplify the volume calculations, the various mining styles were grouped together into several categories and given the following arbitrary names: LONG (for longwall mining), SECO (for secondary mining), DRP (for dense room & pillar), TRP (for typical room & pillar), and LRP (for ladder-like room & pillar). Each mining style was then assigned a value for approximate coal recovery, as well as a value for volume loss from subsidence. The determination of these values is based on professional expertise and on conversations with Willow Creek Mine staff. Each digitized mine block was then assigned a mining style, a mining height, and a total area in square feet. The total area for each digitized block was determined by having AutoCAD<sup>TM</sup> determine the area of the digitized polygon outlining the block. The mined height for each block was determined by averaging coal thickness information shown on the mine maps within or near the block. Where coal thickness information was sparse or unavailable, mined heights were estimated based on interpolation between the nearest locations where data are available. The volume for each digitized mine block was then calculated by multiplying the total area of the block, the percentage of coal recovery within that area, the mined height, and the percentage of mined height not lost to surface subsidence. This information was tabulated for each mine using an interactive spreadsheet. #### 3.0 DESCRIPTION OF THE LEASE AREA The area of interest, located west of Highway 6 and north of Spring Canyon (Figure 2), contains a series of deeply incised, narrow-bottom canyons separated by Ford Ridge. This narrow ridge trends diagonally through the area and separates the Price River drainage from the Spring Canyon drainage. Important canyons in the Price Canyon drainage include, from south to north, Hardscrabble Canyon, Gentile Wash, Bear Canyon, and Crandall Canyon. In the Spring Canyon drainage, the main canyons include Sowbelly Gulch and Robinson Gulch. These canyons are generally steep walled, with moderate to low soil cover. Rocky cliffs commonly occur where the Castlegate Sandstone outcrops on hillsides. The vegetation cover in most areas is relatively sparse, with sagebrush and deciduous brush covering the south facing slopes, and isolated stands of conifer trees occurring on north facing slopes. The old mine workings considered for potential injection in this investigation are shown on Plates 1 through 4, and include the Royal, New Peerless, Spring Canyon #5, Spring Canyon #1, Hardscrabble #4, Castlegate #3, and Castlegate #1 Mines. Each of these mines is located west of Highway 6 between Spring Canyon on the south and Crandall Canyon on the north (Figure 2). In addition to the Castlegate #3 Mine listed above, another abandoned mine is shown on old maps as being called the Castlegate #3 Mine. This second and smaller Castlegate #3 passes underneath the Price River at shallow levels, is already flooded with water, and cannot be used for storage of additional water. To eliminate possible confusion between these two mines, the mine passing underneath the Price River will be referred to in this report as the Under-River Mine. #### 4.0 GEOLOGIC SETTING #### 4.1.1 Blackhawk Formation All of the mine workings evaluated as potential sumps for the storage of mine water are in the lower portion of the Blackhawk Formation. The Blackhawk Formation consists primarily of interbedded sandstone, mudstone, shale, and coal with a total thickness of about 1,100 to 1,300 feet in the Willow Creek area. Individual rock layers in the formation are generally lenticular in nature and it is not possible to trace individual layers over significant lateral distances. Several thicker, massive, sandstone units, which are more continuous in nature, occur in the lower portion of the Blackhawk Formation. Most of the coal reserve in the lease area lies in the lower half of the Blackhawk Formation, above the Spring Canyon Sandstone. Important coal seams in the Willow Creek area are the A-Seam, the Kenilworth Seam (K-Seam), the D-Seam (which is currently being mined at the Willow Creek Mine) and the Sub 3-Seam. In many locations, the coal seams in the Blackhawk Formation have experienced natural coal burns along the outcrop. The coal burn commonly results in intense fracturing of the rocks immediately above and below the coal seam and may extend several hundred feet laterally into the mountain. #### 4.1.2 Mancos Shale The marine Mancos Shale underlies the Blackhawk Formation in the study area (in the adjacent Wasatch Plateau coal district, the lower, massive-sandstone tongues of the Blackhawk Formation are designated as the Star Point Sandstone). The Mancos Shale consists of highly erodeable calcareous, gypsiferous, and carbonaceous dark gray shale. The Mancos Shale is generally considered mostly impermeable to groundwater flow. #### 4.1.3 Structure The study area lies in the Book Cliffs Coal Field in a three-way transition zone between the Colorado Plateau, Uinta Basin, and the Wasatch Plateau physiographic provinces. The rocks in the lease area were protected from major tectonic stresses by stress release along the Fish Creek Graben. There is a lack of major structural features in the area, such as major faulting and strong jointing. Where minor fracturing and jointing do occur, they primarily trend approximately 60° W with dips of about 5° to 7° from vertical. Fracture densities are greatest in thin-bedded or fine-grained strata. Thicker-bedded rocks and homogeneous sandstones commonly have lower fracture densities. Rock layers in the region generally dip about 8° north to northeast, although in localized areas the rocks may dip as steeply as 15° where differential compaction of the coal seams has occurred. #### 5.0 VOLUME ASSUMPTIONS AND MINE INTERCONNECTIONS #### 5.1 Assumptions Used in Mine Volume Calculations The calculation of mine volumes available for water injection requires making several assumptions, which are listed and discussed below. Assumptions used in calculating estimated fillable mine volumes include 1) the thickness of the coal seams and the percentage of coal recovered, as opposed to coal left in place, 2) the extent to which the mined volume has been lost to surface subsidence, 3) the amount of water existing in the mines before injection, and 4) whether seals constructed in the mine will leak sufficiently to allow flooding of sealed passages. The ambiguity involved in determining many of these parameters results in considerable uncertainty in the results of the mine volume calculations. Even so, using reasonable estimates allows a determination as to whether or not the abandoned mines can potentially hold the water CPMC proposes to discharge. #### Coal seam thickness and mined height A determination of the height of coal that was extracted during mining is required to calculate the volume of mine voids. In many locations, this parameter is unknown. In these areas, an assumption of mined height has been made based on the thickness of the coal seam in that location, and judgements regarding the percentage of the coal seam height commonly extracted by the mining technique used in that area. Based on examination of the mine working maps, it is apparent that variations in coal seam thicknesses generally occur in a relatively gradual and uniform manner. This suggests that interpolation of coal thicknesses between data points, where such data are sparse, should yield reasonably accurate estimates of actual coal thickness. Different styles of coal mining have different coal recovery percentages (i.e. leave different percentages of unmined coal after mining). The differences in the percentage of coal extracted by different mining styles are significant. The coal recovery parameters used in making the volume calculations are listed in Table 1. These estimated recovery percentages are based on discussions with CPMC personnel and graphical analysis of the mine working maps and are believed to be reasonably accurate. The mine volume calculation equations are incorporated into the volume calculation spreadsheet in a manner that is conducive to doing sensitivity analyses by varying the value of the coal recovery parameter. Table 1 – Coal Recovery and Volume Loss | Mining Style | Coal Removed | Loss to Surface Subsidence | | |-----------------------|--------------|----------------------------|--| | Longwall | 100% | 20% | | | Secondary | 80% | 20% | | | Dense Room & Pillar | 60% | 0% | | | Typical Room & Pillar | 50% | 0% | | | Ladder-Like | 45% | 0% | | | | | | | Mine volume lost to surface subsidence After mining in an area is complete, settling of the rock overburden can result in surface subsidence and a diminished open mine volume. Although longwall and secondary mining techniques commonly result in partial collapse of the initial open voids, the volume of open space is not lessened, rather it is redistributed upward (except for the volume lost to surface subsidence). Room and Pillar mining (without secondary recovery) commonly results in little or no surface subsidence. If longwall or secondary mining takes place under shallow cover or beneath relatively flexible rocks, then up to 70% of the original void space can be lost to the ground surface as subsidence. If the mining takes place under considerable cover or beneath strong, rigid rocks, most of the mining volume stays within the caving zone, within and immediately above the original void. Widely used and generally accepted equations governing the predicted height of the caving and fracture zones above longwall mined areas have been developed. The application of these equations to coal mining in the Wasatch Plateau coal district is summarized in Kadanuk (1994). Generally, the caving zone is predicted to propagate upward for a distance of 8 times the mined height. The fracture zone is predicted to propagate upward for a distance of 30 times the mined height. Thus, using a conservative estimate of 10 feet for the mining height, the caving zone is predicted to extend upward approximately 80 feet, and the fracture zone should extend approximately 300 feet. Most of the redistributed open space remaining in an area after longwall mining is contained in the caving zone as shown in Figure 3. Examination of mine, structure, and topographic maps reveals that most of the mine areas being considered for water storage are situated under considerable cover, ranging from 500 to over 2,400 feet. Assuming a mine height of 10 feet, this corresponds to a cover thickness ranging from 50 to 240 times the mine height. Rocks overlying the mines also contain numerous thick and rigid sandstone lenses (CPMC Mining and Reclamation Plan). Because of these factors, and after discussions with CPMC personnel, it was decided that subsidence in the areas being considered was probably minimal. With surface subsidence estimates ranging from 0% to about 30% of the mine height, a possibly conservative value of 20% was selected for the estimate of mine volume lost to subsidence in areas of longwall and secondary mining. For areas of room and pillar mining with no secondary recovery, it is assumed that there is no volume loss. The assumed values for coal recovery and volume loss due to subsidence are summarized in Table 1. s Subsidence Figure 3 Fracturing and Subsidence Above Longwall Panel Existing volumes of water in mine workings The mine volume calculations also require an assumption as to the amount of water already present in the various mines. The water level measured in the Crandall Canyon ventilation shaft (Plates 1 and 2) appears to represent the elevation of impounded water in the Castlegate #3 and Spring Canyon #5 mines. Although these mines appear to presently contain some water, there is likely considerable volume available for the storage of additional water. No recent water level information is available for the Royal and New Peerless Mines, but old maps indicate that some water was present during mining operations. The water level shown on the old mine maps is therefore interpreted as the minimum amount likely to be present. The quantity of water currently contained in the Royal and New Peerless Mine complex remains problematic at this time. The dip of the coal seam in the Spring Canyon #1 Mine is such that these mine workings have the potential to be useful in storing additional water, but nothing is known about how much water may already be present. The Castlegate #1 Mine slopes upward away from the portal and thus cannot be used to store water. The Hardscrabble #4 Mine cannot be used to store water because its workings are higher than the overflow point of the mines connected to it. Water put into the Hardscrabble #4 mine would migrate downward into the other mines to which it is interconnected. If these other mines were already filled to their recommended limits, the excess water could cause the other mines to overflow. Hydraulic integrity of mine seals After mining in a portion of a coal mine is completed, these areas are commonly sealed. Information about the location of seals in many of the old workings is very incomplete. Seals in the mine workings are intended to prevent airflow to or from certain portions of the mines. This prevents explosive gasses or oxygen deficient atmospheres in abandoned portions of a mine from reaching active mining areas, and also allows more efficient ventilation of active mining areas. Currently, mine seals are commonly constructed of block, with grout being used to seal the margins of the wall to the surrounding rock material. Historically, these seals may have been created using other techniques and with other materials. Since mine seals are intended to be air-tight, it is possible that they are also water-tight, which would interfere with injection of water into the old mine workings. After discussions with CPMC staff, it was concluded that the mine seals would almost certainly leak water, but that the rate of leakage is not known. It is possible that mine seals will eventually implode, as water pressure from impounded water increases until the pressure exceeds the strength of the seal. It seems more likely that the seals would continuously leak water and the hydraulic head on both sides of the seal would remain near equilibrium. For this investigation, it has been assumed that seals in the old mine workings will leak, and that they will leak at a rate fast enough to not interfere with the injection of water into the old workings. #### 5.2 Mine Interconnections and Overflows The mine volume available for injection with water is limited by the lowest overflow point for each mine, as well as by the amount of water already present in the mines. In order to determine the overflow point for the various mines, each map was carefully examined to locate mine portals and connections to other mines. The old workings that were considered for water storage were found to fall into three distinct groups, each with a different overflow location and elevation. These groups include 1) the Royal and New Peerless Mines, 2) the Castlegate #3, Castlegate #1, Spring Canyon #5, and Hardscrabble #4 Mines, and 3) the Spring Canyon #1 Mine. The locations of the mine portals are shown on Figure 2, while the mine workings are shown on Plates 1-4. The Royal and New Peerless Mines appear to be parts of the same mine complex, and are connected in multiple locations. The spillover point for this group of mines is the rock-slope portal of the Royal Mine, located in Bear Canyon just above an elevation of 6,300 feet (Figure 2). The Castlegate #1, Castlegate #3, Hardscrabble #4, and Spring Canyon #5 Mines also appear to be connected. The Hardscrabble #4 and Spring Canyon #5 Mines are simply separate portals to the same mine complex, which are then connected to the Castlegate #3 Mine via the Crandall Canyon ventilation shafts (Plates 1 and 2). This mine complex is then connected to the Castlegate #1 Mine by a rock-slope from the Castlegate #3 Mine (Plates 2 and 3). The overflow point for this group of mines is the top of the rock-slope in the Castlegate #1 Mine, at an elevation of 6,405 feet. Water overflowing this point would flow to and out of the Castlegate #1 portal, located above the highway in Price Canyon (Figure 2). Although connected to the other mines, the Hardscrabble #4 Mine is higher than the 6,405 elevation of the spillover point for the connected mines, and thus has no useable storage volume. The third group of mines consists of only the Spring Canyon #1 Mine, which does not appear to connect to the other mines (Figure 2 and Plate 2). The mine maps suggest that this mine would not overflow until filled to an elevation of approximately 6,900 feet, at which point water would spill from one of its many portals in Sowbelly Gulch. The known interconnections between the various mines are not the only significant pathways between mines. Exploration drillholes and overlapping longwall or secondary mining areas complicate the determination of mine interconnections by creating the potential for significant leakage between mines vertically. Parts of the Spring Canyon #5 Mine directly overlie large secondary mined portions of the Spring Canyon #1 Mine, with the lowest area of significant overlap being the 6,600-foot elevation of the #5 Mine (Plate 4). Filling the Spring Canyon #1 Mine above this point could result in leakage into the overlying mine through drillholes and fractures created by secondary mining. Because of the possibility of leakage into overlying workings, the recommended injection elevation of the Spring Canyon #1 Mine is lowered from 6,900 feet to 6,600 feet. In a similar manner, the Royal Mine directly overlies significant portions of the Castlegate #3 Mine (Plate 4). Here, longwall panels of the #3 Mine are overlain by secondary mining areas of the Royal Mine. Although the rock between the two mines is approximately 400 feet thick, suggesting that leakage may not be significant, there are likely to be exploration drillholes in the area which may facilitate interconnections between these two mines. Therefore, the recommended injection elevation of the Castlegate #3 Mine, and mines connected to it, is lowered from 6,400 feet to the spillover elevation of the Royal Mine at 6,300 feet. Lowering the recommended injection elevation, so that these mines would be filled to the same level, also allows injection of both groups of mines from a single injection site. #### 6.0 MINE VOLUME RESULTS #### 6.1 Mine Volume Results Mine volumes were calculated for those parts of the various mines that appear to have volume available for water injection and storage. Results of these calculations are summarized in Table 2. The full calculations are shown on plates 5-8. The elevations listed in Table 2 represent recommended elevations to which the data indicate that water can be injected and stored in the mines. Below these elevations, overflow or significant leakage of water from the mine workings would not be expected. Maximum and minimum volumes listed for each mine include only the volume existing below recommended injection elevations, and available for storage of additional water. The difference between maximum and minimum volumes for each mine represents uncertainty in the volume of water already present in the workings considered for water injection. From Table 2, it is clear that a more accurate estimate of the available volume depends greatly on the determination of the current water levels in the Royal / New Peerless and Spring Canyon #1 Mines. A total volume available for water injection excluding the Spring Canyon #1 Mine was listed because all of the other mines could theoretically be filled from a single injection site located in Bear Canyon. Storing water in the Spring Canyon #1 Mine would require additional piping to a separate injection site in Sowbelly Gulch. Table 2 - Summary of Volume Calculation Results | Name of Mine | Recommended | Volume Below | Current | Current Water Volume Potential Volume Availab Present in Mine Workings Storage of Additional Wa | | Potential Volume Available for | | | | |-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------|------------------|--------------------------------------------------------------------------------------------------|----------------|--------------------------------|----------------|--------------------------|--| | Considered for | Injection | Injection | Water | | | onal Water | | | | | Water Storage | Elevation (feet) | Elevation | Elevation (feet) | Min. (Gallons) | Max. (Gallons) | Min. (Gallons) | Max. (Gallons) | Comments | | | Royal Mine | 6,300 | 1,166 million | Unknown | 228 million | 1,166 million | 0 | 938 million | May already be flooded | | | New Peerless | 6,300 | - | - | - | - | - | - | Included with Royal Mine | | | Castlegate #3 | 6,300 | 941 million | 5,770 | 92 million | 364 million | 577 million | 849 million | | | | Spring Canyon #5 | 6,300 | 144 million | 5,770 | 1 million | 1 million | 143 million | 143 million | | | | Spring Canyon #1 | 6,600 | 560 million | Unknown | 0 | 560 million | 0 | 560 million | May already be flooded | | | Hardscrabble #4 | - | - | - | - | - | 0 | 0 | Above spillover point | | | Castlegate #1 | - | - | - | - | - | 0 | 0 | Above spillover point | | | Under-River Mine | - | - | - | - | - | 0 | 0 | Already flooded | | | Total Potential Vol | Total Potential Volume for Additional Water 720 million 2,490 million | | | | | | | | | | Total Potential Volume Using a Single Injection Well¹ | | | | | | 720 million | 1,930 million | | | | 1 The Spring Canyon #1 workings are not believed to be interconnected with the other workings | | | | | | | | | | Table-2-Volume Results.xls Mayo and Associates February 23,1999 #### 7.0 IMPACTS OF STORING WATER IN OLD WORKINGS This section describes the likely fate of mine water stored in abandoned mine workings and the potential hydrologic impacts which might occur as a result of the storage of this water. Potential problems resulting from the injection of water include 1) the overflow of injected water from mine portals, 2) the creation of new springs or degradation of water quality at existing springs by leakage of mine water to the surface, and 3) degradation of the quality of the water presently contained in the mine workings or the quality of water in bedrock groundwater systems surrounding the mine workings. #### Fate of injected water Accidental discharge of injected water to the surface from mine portals is unlikely if the water levels in the mines receiving the water are monitored to ensure that the water levels in the old workings do not exceed the recommended elevations. The only mine portals that might experience overflow are those for the Under-River Mine which crosses under the Price River. This mine, and the potential for overflow from it, is discussed in more detail at the end of this section. #### Seepage of impounded water to the surface Assuming that the elevation of the water injected into the old mine workings does not exceed recommended levels, the potential for the creation of new springs at the surface is low. This is because very little of the surrounding topography is lower than the recommended maximum elevation for water injection. As can be seen on Plate 9, only small portions of Price Canyon are topographically lower than 6,300 feet. In addition, most of the mine workings to be flooded are several thousand feet or more, horizontally, from the canyon walls at these elevations. The rocks between the mine workings and the canyon walls are composed predominantly of interbedded layers of sandstone, mudstone, and shale. Although some of the sandstone units have the ability to transmit water, the lenticular nature of sandstone units precludes significant lateral migration of groundwater because the sandstone units pinch-out and interfinger with shale or mudstone units that are nearly impermeable (Mayo and Associates, 1998). Permeability studies on the sandstones of the lower Blackhawk Formation (and Star Point Sandstone) suggest that the ability of these units to transmit water is poor (Lines, 1985). Hydraulic conductivities for the Blackhawk Formation reported by Lines (1985) ranged from impermeable to $1.1 \times 10^{-8}$ feet/day for the shales, and from $1.1 \times 10^{-2}$ to $9.3 \times 10^{-8}$ feet/day for the interbedded sandstones and siltstones. Lines (1985) noted that some of the shales tested were impermeable to water, even when tested under a pressure of 5,000 pounds per square inch. That groundwater encountered during mining operations in the Book Cliffs and Wasatch Plateau coal districts is commonly several thousand years old supports the supposition that groundwater does not readily move through the lower Blackhawk Formation. If new springs were created as a result of seepage of injected water through the sandstones, such springs would be limited to elevations below 6,300 feet. Only the river bottom and lowest 200 feet (in elevation) of the Price Canyon and the very lowest portions of several side canyons (Plate 9) are below this elevation. The long seepage distances and poor water transmission potential would probably limit the discharge of any new springs to small seeps. In evaluating specific locations where there is potential for discharge of impounded mine waters to the surface, three regions with differing leakage potentials have been delineated. In each region the potential for leakage to the surface is limited to the area below 6,300 feet elevation (the maximum hydraulic head of the impounded water). Differences in geology, and topographic and stratigraphic gradients result in differing potentials for seepage in each of these three regions. These regions have been designated as Zones A, B, and C. These zones are plotted on Plate 9. Annotated photographs showing the land surface in Zones A, B, and C are presented in Figure 4. Additional annotated photographs depicting the land surface in Zones A, B, and C below 6,300 feet are presented in the appendix. #### Zone A Zone A extends from the intersection of the 6,300 foot elevation contour with the bottom of Price Canyon in the northwest quarter-section of Section 26, T. 12 S., R. 9 E. to the approximate contact of the top of the coal-bearing horizons of the Blackhawk Formation in Price Canyon in east-central Section 35, T. 12 S., R. 9 E. (Plate 9). Within this zone, only the lowermost canyon walls immediately adjacent to the Price River are below 6,300 feet in elevation. The potential for seepage of impounded waters to the surface in Zone A, and the potential for related slope failures, is minimal. The rocks exposed in Zone A are part of the upper Blackhawk Formation and consist of interbedded and discontinuous mudstones, shales, and sandstone channels. The sandstone channels are generally isolated from each other both laterally and vertically by low permeability rocks (Mayo and Associates, 1998). More Zone A Coal Burn in Price Canyon located in NE 1/4, SE 1/4, Sec. 35, T12S, R9E. Zone A View looking southwest down Price Canyon from the Center of SW 1/4 Sec. 26, T12S, R9E. Figure 4 Zones of potential water seepage Zone B Bedding in Blackhawk Formation on Highway 6 located at junction of sections 1,2, T13S, R9E and sections 35, 36, T12S, R9E. Zone B North of roadcut on Highway 6 in Price Canyon 1/8 mile northwest of Power Plant located in the Center of NW 1/4, Sec. 1, T13S, R9E. Figure 4 Continued Zone C View from Helper looking northwest into study area. Zone C Looking northwest in Price Canyon from Highway 6 below the check station located in SW ¼, SW ¼, Sec. 1 and in the North of NW ¼, Sec. 12, T13S, R9E. Figure 4 Continued Approximately 6300 ft. Zone C Mancos Shale tongues in Price Canyon just above check station located in the Center of SW $^{1}$ /4, Sec. 1, T13S, R9E. continuous, massive sandstone units, which are present in the lower Blackhawk Formation are absent in the rocks of Zone A. Additionally, because the coal seams and the abandoned mine workings are in the lower part of the Blackhawk Formation, water must flow across bedding planes upward in the geologic section (i.e. it must successively flow from one horizon in the Blackhawk Formation into and through the next horizon stratigraphically above it) in order to seep to the surface in Zone A. This is unlikely to occur because in stratified rocks the vertical permeability is commonly only a fraction of the horizontal permeability. Thus, because of the discontinuity of the rock strata in this zone and the limited potential for lateral or vertical migration of the water, the risk of impounded water migrating to the surface in Zone A is very low. If water were to seep to the surface in Zone A, because the region below 6,300 feet is limited almost entirely to areas which are less than 100 feet above the canyon floor, the potential for major slope failure as a result of saturated sediments on steep slopes is minimal. #### Zone B Zone B consists of the region in Price Canyon below 6,300 feet in elevation that is approximately on strike with the lower Blackhawk Formation. The area extends for approximately one mile along Highway 6 between the east-central portion of Section 35, T. 12 S., R. 9 E., and the west-central portion of Section 1, T. 13 S., R. 9 E., just below the intersection of Highway 6 and Highway 33 (Plate 9). Each of the major coal seams crops out in the canyon bottom in Zone B. The potential for leakage of impounded waters to the surface, and the related potential for slope failure in Area B is low. However, of the three zones of potential leakage discussed in this report, the potential for leakage in Zone B is much greater than it is in either Zones A or C. Because the same stratigraphic horizons that contain the old mine workings crop out at the surface in Zone B, water may seep laterally to the surface without flowing across bedding planes. Generally, the rocks of the lower Blackhawk Formation are discontinuous and lenticular in nature. Individual sandstone lenses are encased both vertically and horizontally in low permeability shale and mudstone (Mayo and Associates, 1998). Thus, the potential for lateral migration of water through these sediments is low. Likewise, the sandstone paleochannels, which are commonly known to conduct water when they are encountered in the mine environment, are lenticular and somewhat discontinuous in nature. However, several massive, more continuous sandstone units occur in the lower Blackhawk Formation in the Castlegate area. These include the Kenilworth, Aberdeen, and Spring Canyon Sandstones. These massive sandstone units may transmit water laterally over greater distances than do other rock units of the lower Blackhawk Formation. However, aquifer testing data obtained from massive sandstone units of the lower Blackhawk Formation elsewhere in the Book Cliffs and Wasatch Plateau coal fields indicate that the hydraulic conductivity of these rocks are generally very low. If any of the flooded mine workings are in direct contact with these massive sandstone units, there is the potential for some leakage of mine water to the surface through these rocks, although the rate would likely be low. Fracturing in the massive sandstone units could potentially increase the transmissivity of these rocks, which could result in a greater likelihood of seepage at the surface. In many locations, the coal seams in the Blackhawk Formation have experienced natural coal burns along the outcrop. The coal burn commonly results in intense fracturing and mineralogical alteration of the rocks immediately above and below the coal seam. The coal burn commonly extends several hundred feet laterally into the mountain. As a result of the coal burn, large aperture fractures and void spaces exist that appear to be well interconnected. Where extensive coal burns have occurred in Zone A, there is therefore an increased potential for seepage of impounded mine workings to the surface. However, the major areas of coal burn exposed in Price Canyon (Figure 4) are not associated with the massive sandstone units of the lower Blackhawk Formation. Because the coal burned area is primarily associated with lenticular, discontinuous strata (which do not conduct water laterally), it would be difficult to provide recharge to these coal burns deeper within the mountain where the rocks are not burned. Most of the rock strata exposed in Price Canyon along Zone B are well consolidated, competent rock. Soil development appears to be minimal in these areas. Therefore, if slow seepage of mine water to the surface were to occur in Zone B, it seems more likely that the water would discharge to the surface as a spring or seep and would not result in major slope failure. Naturally occurring slope failures are not common in this area, suggesting that the near surface sediments are relatively stable. #### Zone C Zone C includes the region below 6,300 feet in elevation where rocks that are stratigraphically below the lower Blackhawk Formation are exposed at the surface. This area includes all of the lower reach of Price Canyon below the west-central portion of Section 1, T. 13 S., R. 9 E. (Plate 9). It also includes a small area in the mouth of Hardscrabble Canyon and the lowest elevations on the north side of Spring Canyon below the center of Section 22, T. 13 S., R. 9 E. In order for impounded water to migrate to the surface in Zone C, water must move down through the geologic section across bedding planes. The strata exposed in Zone C consist primarily of rocks of the Star Point Sandstone and the interbedded Mancos Shale. The Mancos Shale is known regionally as an extremely poor transmitter of water. Additionally, the old mine workings to be filled are located at substantial distances from the land surface in Zone C (most areas are greater than one mile away from the nearest filled mine area). Therefore, the potential for leakage of impounded mine waters to the surface in Zone C is considered to be remote. In locations where the mine workings to be injected are located directly under the canyon bottom, most of the mine workings are under relatively deep cover. Workings of the New Peerless Mine, for example, go directly under the Price River at a depth of nearly 1,000 feet (Plate 1). Similarly, workings of the Royal Mine lie beneath the mouth of Bear Canyon, at a depth of approximately 500 feet below the surface. In these locations, water would have to pass vertically upward through the bedrock, almost directly across bedding. The numerous thick shale and mudstone beds in the bedrock make this scenario very unlikely unless the rock is highly fractured. Since mining in these areas was predominantly by room and pillar methods (without secondary recovery), significant mining induced fracturing of the overlying bedrock is unlikely. A potentially serious problem that could reasonably occur as a result of water injection is overflow or upward leakage from workings of the Under-River Mine. Although available maps show that this mine is not connected to the mines proposed for water injection and storage, a barrier of only 50 to 100 feet separates it from workings of Royal Mine (Plate 1), which is proposed for injection. Workings of the Under-River Mine are shown on maps to pass underneath the Price River at very shallow levels. Although it is not clear from the mine maps, portions of this mine may be separated from the overlying Price River channel by less than 200 feet of overburden, and from the bottom of Barn Canyon by less than 50 feet of overburden. Some of this overburden is composed of alluvial deposits that readily transmit water. If the abandoned mine workings are filled to an elevation of 6,300 feet, there would be approximately 150 feet of differential in hydraulic head between the mine workings and the overlying Price River, which is at an elevation of 6,150 feet. Therefore, there is the potential for upward leakage of water from this mine to the surface. Previous work (Mayo and Associates, 1998) has suggested a likely connection between waters of the Under-River Mine and shallow alluvial groundwater systems or surface waters in the vicinity of the river. Even if water in this mine could not leak upward through the roof, however, the portals of the mine are topographically below the recommended water injection elevation for the adjacent Royal Mine. Even if water injected into the Royal Mine was able to leak into the Under-River Mine and it did *not* leak upward into the river bottom, it would likely overflow the adjacent portals of the Under-River Mine and flow over the land surface into the Price River. It seems clear that if water injected into other nearby mines is able to leak into the Under-River Mine, it will then enter the shallow alluvial groundwater system or overflow to the river. It is unknown whether water injected into the Royal Mine will leak into the Under-River Mine, and if so, whether the rate of leakage will be significant. After the commencement of water injection, this determination can be made by monitoring water levels in the Under-River Mine (Plant Recovery Well and Plant Injection Well; Plate 10). Water levels in these wells may then be correlated with water levels in the Crandall Canyon Shaft and the new monitoring well in Bear Canyon. Although mine maps show a barrier between the Under-River and Royal mines, it is not known whether this barrier remains intact, or if the 50-foot barrier can effectively hold back water. It is possible that the integrity of the barrier may have been compromised as a result of an accidental mining error. Degradation of the quality of water currently existing in the mine workings Another potential consequence of the proposed water injection is that the quality of waters already existing in the old mine workings may be lessened. If existing waters in the old mine workings are of a higher quality than the injected waters, then the quality of that water would be lessened. The magnitude of the potential impact will be proportional to the magnitude of the difference in the water quality between the two water bodies, and the volume of water injected relative to the amount that was present prior to the injection. However, water already in the workings to be injected may be similar in TDS and chemistry to the water being injected, as the Castlegate #2 Mine being dewatered is only a few miles from the proposed receiving mines. Under these conditions, there would be no detrimental impact on water quality. Because UIC requirements preclude the degradation of water sources, it will be necessary to monitor the water quality of both the receiving waters and the water being injected. #### **8.0 CONCLUSIONS** 1) Based on the available data and the assumptions listed previously, it appears that the investigated mine workings do have the potential for storing considerable volumes of water. The calculated volumes potentially available for the storage of additional water in each of the investigated mines are listed in Table 3, along with overall and single-injection site totals. Table 3 – Potential Volume for Storage of Additional Water | Mine Name | Potential for Storage of Additional Water | |----------------------------------|-----------------------------------------------| | Royal / New Peerless Mines | Between 0 million and 938 million gallons | | Castlegate #3 Mine | Between 577 million and 849 million gallons | | Spring Canyon #5 Mine | Approximately 143 million gallons | | Spring Canyon #1 Mine | Between 0 million and 560 million gallons | | Hardscrabble #4 Mine | None | | Castlegate #1 Mine | None | | Under-River Mine | None | | Potential additional storage | Between 720 million and 2,490 million gallons | | Potential using 1 injection site | Between 720 million and 1,930 million gallons | 2) Mine maps suggest that the Castlegate #3 and Spring Canyon #5 Mines are connected via the ventilation shafts in Crandall Canyon, and that the Royal and New Peerless Mines are also connected to each other. Mine Map information also suggests that the Spring Canyon #1 Mine is not connected to the other mines. Because the Royal Mine appears to overlie the Castlegate #3 Mine locally, it is possible that water could be injected into the Royal, New Peerless, Castlegate #3, and Spring Canyon #5 Mines from a pipeline to a single well-placed injection well. One possible location for such an injection well would be in Bear Canyon, with the specific coordinates listed in Table 4 and the general location shown on Plate 10. Such a well would need to be carefully drilled and inspected prior to injection, to ensure that it fully penetrated and is open to both sets of mine workings. It is also important to note the exact elevation at which workings of the Royal Mine are intersected by this well, as these workings are very close to the maximum injection elevation of 6,300 feet. Should workings of the Royal Mine be intersected above the injection elevation of 6,300 feet, water levels in the different workings will not be able to equilibrate during injection. Under these conditions it may be preferable to have two injection wells, located at essentially the same injection site, allowing the different workings to be injected independently. - 3) Based on available data and the assumptions listed in sections above, calculations suggest that such a single injection well may be able to inject somewhere between 684 million and 1,962 million gallons of water before overflow or significant leakage would occur. The only potentially fillable mine workings which do not appear to be accessible from this injection well are those of the Spring Canyon #1 Mine. - 4) Storing water in workings of the Spring Canyon #1 Mine, if they are not already full of water, would require an additional injection site. Table 4 - Proposed locations for monitoring and injection wells | Monitoring Well | East* | North* | Township and Range Location | |--------------------------|-----------|---------|--------------------------------| | Proposed Monitoring Well | 2,174,790 | 515,070 | North 1/4 Section 35, T12S R9E | | Monitoring NW Limit | 2,174,720 | 515,170 | | | Monitoring NE Limit | 2,174,860 | 515,140 | | | Monitoring SE Limit | 2,174,840 | 514,310 | | | Monitoring SW Limit | 2,174,720 | 514,330 | | Monitoring Well target is on the south side of the mouth of Bear Canyon Surface elevation of the monitoring well site is approximately 6,320 feet Depth to D-Seam workings of the Royal Mine is estimated at 450 feet Elevation of the D-Seam workings at this location is estimated at 5,870 feet | Injection Well | East* | North* | Township and Range Location | |-------------------------|-----------|---------|-----------------------------| | Proposed Injection Well | 2,170,730 | 511,820 | SE 1/4 Section 34, T12S R9E | | Injection NW Limit | 2,170,270 | 511,925 | | | Injection NE Limit | 2,171,115 | 512,160 | | | Injection SE Limit | 2,171,100 | 511,700 | | | Injection SW Limit | 2,170,420 | 511,510 | | Injection Well target is in the bottom of Bear Canyon, at the mouth of a side canyon Injection Well target is essentially the same location as drillhole MC-1 Surface elevation of the injection well site is approximately 6,630 feet Depth to D-Seam workings of the Royal Mine is estimated at 330 feet Elevation of the D-Seam workings at this location is estimated at 6,300 feet Depth to Sub-3 workings of the Castlegate #3 Mine is estimated at 770 feet Elevation of the Sub-3 workings at this location is estimated at 5,860 feet Table-4-Proposed Wells.xls Mayo and Associates April 23,1999 <sup>\*</sup> These locations based on the coordinant system of mine maps provided by CPMC - 5) The barrier shown on mine maps between the Royal and Under-River Mines may not be intact or may leak. If so, water injected into the Royal and New Peerless Mines could leak into the Under-River Mine. Such waters could then enter a shallow alluvial groundwater system in Price Canyon or overflow the surface to the Price River. Monitoring of water levels in the Under-River Mine during injection will reveal whether this barrier will leak water at a significant rate. - 6) Large uncertainties in the amount of water already existing in several of the mine workings, particularly the Royal, New Peerless, and Spring Canyon #1 Mines, preclude a more accurate calculation of the volume available for storage of additional waters. #### 9.0 RECOMMENDATIONS 1) Because of the importance of determining how much water is currently present in the Royal and New Peerless Mines, the primary recommendation of this report is to drill a monitoring well near the mouth of Bear Canyon. The proposed location of this monitoring well is shown on Plate 10, with specific coordinates listed in Table 4. This monitoring well would allow the level of impounded water in the Royal and New Peerless Mines complex to be determined. This will allow a better estimate of the volume available in these mines for injection of additional water. It will also allow water levels and water chemistry in the Royal Mine and Under-River Mine to be compared. This may be helpful in determining whether the barrier between the Royal and Under-River Mines will actually prevent significant leakage between the two mines. It is important that this well be drilled from an elevation above 6,300 feet, to prevent leakage of injected water through the monitoring well. The elevation of the proposed drilling site should be checked prior to drilling, and the drill site adjusted uphill to the south if needed, as the proposed location is very close to the critical elevation of 6,300 feet. If large amounts of water are found in the Royal Mine, particularly if that water resembles river water with a low TDS, high tritium content, and a recent radiocarbon age, then it is likely that the barrier between the mines has leaked. In that case, injection of the Royal Mine would not be recommended, as the injected water would likely leak from the Royal Mine to the Under-River Mine, and then subsequently to the Price River or shallow alluvial groundwater systems which eventually enter the Price River. If the recommended well did not reveal large quantities of lower TDS, modern water in the Royal Mine, or water levels similar to those in the Price River and the Under-River Mine, it can probably be assumed that the mine barrier will likely not transmit significant quantities of water. The well would then provide an ideal location to monitor water levels and quality in the Royal Mine during future injection activities. - 2) Waters in the Crandall Canyon Shaft should be re-sampled, with care taken to obtain samples from the bottom, middle, and top of the water column. This would allow a better determination of the baseline water quality parameters of the water currently impounded in the Castlegate #3 and Spring Canyon #5 Mines. This will allow a determination of the potential for degradation of water quality of existing waters in the mines. Periodic measurements of water levels in the shaft are also recommended to better determine current water levels in the mines, and to establish baseline water level data prior to any future injection activities in these mines. Monitoring of water levels in both the Crandall Canyon Shaft and in the proposed monitoring well is recommended because the shaft and proposed well will intersect different mine workings. Since the various mine workings will likely fill at different rates, prior to reaching equilibrium at the recommended injection level, independent monitoring of each set of interconnected workings is recommended. - 3) An injection well should be drilled, if and when injection and long term water storage proves feasible. This well should be drilled at a location where it can penetrate both the Royal and Castlegate #3 workings, such as the location in Bear Canyon shown on Plate 10. Should the Royal and New Peerless Mines prove to be already filled with water, other injection sites and additional options may be recommended. #### 10.0 REFERENCES CITED - Cyprus Plateau Mining Corporation, Mining and reclamation permit, Willow Creek Mine. - Kadanuk, L.L.M, 1994, Response of springs to longwall coal mining at the Deer Creek and Cottonwood Mines, Wasatch Plateau, UT. USBM Information Circular 9405, 21p. - Lines, G.C., 1985, The ground-water system and possible effects of underground coal mining in the Trail Mountain Area, Central Utah, U.S. Geological Survey Water-Supply Paper 1159. - Mayo and Associates, 1998, Intercepted groundwater investigation, Willow Creek Mine, Carbon County, Utah, unpublished consulting report for Cyprus Plateau Mining Corporation, Price, Utah. # **Appendix** Annotated photographs of Zones A, B, and C Photo 3 View looking southwest up Gravel Canyon from Highway 6 opposite of Barn Canyon located in SE 1/4, SE 1/4, Sec. 35, T12S, R9E. Photo 4 Bedding in Blackhawk Formation on Highway 6 located on junction of sections 1,2, T13S, R9E and sections 35, 36, T12S, R9E. Photo 1 View looking southwest down Price Canyon from the Center of the SW $\frac{1}{4}$ , Sec. 26, T12S, R9E. Photo 2 Coal Burn in Price Canyon located in NE 1/4, SE 1/4, Sec. 35, T12S, R9E. Photo 5 Price Canyon looking west at Castle Gate Mine No. 1 located in NW 1/4, NW 1/4, Sec. 1, T13S, R9E. Photo 6 View looking southeast from Highway 6 near loadout facility.. Photo 7 North of roadcut on Highway 6 in Price Canyon 1/8 mile northwest of Power Plant located in the Center of the NW 1/4, Sec. 1, T13S, R9E. Photo 8 Roadcut on Highway 6 in Price Canyon 1/8 mile northwest of Power Plant near junction of Highway 191 located in Center of the NW 1/4, Sec. 1, T13S, R9E. Photo 9 Roadcut on Highway 6 in Price Canyon 1/8 mile northwest of Power Plant near junction of Highway 191 located in Center of the NW 1/4, Sec. 1, T13S, R9E. Photo 10 Strata above junction of Highway 6 and Highway 191 located in the Center of NW 1/4, Sec. 1, T13S, R9E. Photo 11 Drainage at junction of Highway 6 and Highway 191 located in SW 1/4, NW 1/4, Sec. 1, T13S, R9E. Photo 12 Mancos Shale tongues in Price Canyon just above check station located in the Center of SW 1/4, Sec. 1, T13S, R9E. Photo 13 Looking northwest in Price Canyon from Highway 6 below the check station located in SW 1/4, SW 1/4, Sec. 1 and N 1/4, NW 1/4, Sec. 12, T13S, R9E. Photo 14 Spring Canyon looking north located in the South of SW 1/4, Sec. 14, T13S, R9E. Photo 15 View looking up Hardscrabble and Price Canyons from NE 1/4, NE 1/4, Sec. 14, T13S, R9E. Photo 16 View from Helper locking northwest into study area. Plate 5 - Royal / New Peerless Volume Spreadsheet Room And Pillar Mining Dense Typical Ladder DRP TRP LRP 60% 50% 45% 100% 100% 100% | | | | | | | | | | | | | | | | Delow Favel | | | Delaw FeAel | | | |-----------------------------------|-------|------------------------|--------------|-------------------------------|---------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|--------------|-------------------------------------------------|-----------|-----------|-----------|----------------|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------| | | | | | | | | | | | 12070000000 | | | | | (unknown) | Existing | Existing | 6300 | | | | 50 <b>4.4</b> 5.5555 | - C | CANCEL CONTRACT BURNEY | MARK 1000000 | Concentration (Concentration) | | 11-240-5-740-4-0-115 | 120000000000000000000000000000000000000 | 10 2003 V/C/I | Serio Control Control | Block Volume | Block Volume | Elevation | Elevation | Elevation | 2017/10/2007 | Minimum | Maximum | 3403537255745745 | Minimum | Maximum | | Mine | Block | Area (ft^2) | Type | % Mined | % Pores | Coal Min. | Coal Max. | Coal-Avg Go | uess Ht. | (Feet ^ 3) | (Gallons) | Minimum | Maximum | Average | Flooded? | Gallons | Gallons | Can Hold? | Gallons | Gallons | | Royal and | 301 | 440063 | DRP | 60% | 100% | ? | ? | ? | 8 | 2,112,302 | | ? | ? | ? | Yes | 15,800,022 | 15,800,022 | Yes | 15,800,022 | 15,800,022 | | New Peerless | 302 | 934938 | DRP | 60% | 100% | ? | 7 | ? | 8 | 4,487,702 | 33,568,014 | 7 | ? | ? | Yes | 33,568,014 | 33,568,014 | Yes | 33,568,014 | 33,568,014 | | in Coal Seam D | 303 | 862116 | DRP | 60% | 100% | ? | ? | ? | 8 | 4,138,157 | 30,953,413 | ? | ? | ? | Yes | 30,953,413 | 30,953,413 | Yes | 30,953,413 | 30,953,413 | | | 304 | 436958 | DRP | 60% | 100% | ? | ? | ? | 8 | 2,097,398 | 15,688,540 | ? | ? | ? | Yes | 15,688,540 | 15,688,540 | Yes | 15,688,540 | 15,688,540 | | | 305 | 3692114 | DRP | 60% | 100% | ? | ? | ? | 8 | 17,722,147 | 132,561,661 | ? | ? | ? | Yes | 132,561,661 | 132,561,661 | Yes | 132,561,661 | 132,561,66 | | | 306 | 1400889 | DRP | 60% | 100% | ? | ? | ? | 8 | 6,724,267 | 50,297,519 | ? | ? | ? | Maybe | 0 | 50,297,519 | Yes | 50,297,519 | 50,297,519 | | | 307 | 766746 | DRP | 60% | 100% | ? | ? | ? | 8 | 3,680,381 | 27,529,248 | 7 | ? | 7 | Maybe | 0 | 27,529,248 | Yes | 27,529,248 | 27,529,248 | | | 308 | 2890812 | DRP | 60% | 100% | ? | ? | ? | 8 | 13,875,898 | 103,791,714 | ? | ? | ? | Maybe | 0 | 103,791,714 | Yes | 103,791,714 | 103,791,714 | | | 309 | 882513 | SECO | 80% | 80% | ? | 2 | ? | 8 | 4,518,487 | 33,798,130 | ? | ? | ? | Maybe | 0 | 33,798,130 | Yes | 33,798,130 | 33,798,130 | | | 310 | 1192249 | DRP | 60% | 100% | ? | 7 | ? | 8 | 5,722,795 | 42,806,508 | 7 | 7 | ? | Maybe | 0 | 42,806,508 | Yes | 42,806,508 | 42,806,508 | | | 311 | 965105 | DRP | 60% | 100% | ? | ? | ? | 8 | 4,632,504 | 34,651,130 | ? | 7 | ? | Maybe | 0 | 34,651,130 | Yes | 34,651,130 | 34,651,130 | | | 312 | 867449 | DRP | 60% | 100% | ? | ? | ? | 8 | 4,163,755 | 31,144,889 | ? | ? | ? | Maybe | 0 | 31,144,889 | Yes | 31,144,889 | 31,144,889 | | | 313 | 736358 | DRP | 60% | 100% | ? | 7 | ? | 8 | 3,534,518 | 26,438,198 | ? | 7 | ? | Maybe | 0 | 26,438,198 | Yes | 26,438,198 | 26,438,196 | | | 314 | 545901 | DRP | 60% | 100% | ? | ? | ? | 8 | 2,620,325 | 19,600,030 | ? | ? | ? | Maybe | 0 | 19,600,030 | Yes | 19,600,030 | 19,600,030 | | | 315 | 943885 | DRP | 60% | 100% | ? | ? | ? | 8 | 4,530,648 | 33,889,247 | ? | ? | ? | Maybe | 0 | 33,889,247 | Yes | 33,889,247 | 33,889,247 | | | 316 | 842549 | DRP | 60% | 100% | ? | 7 | 7 | 8 | 4,044,235 | 30,250,879 | ? | ? | 7 | Maybe | 0 | 30,250,879 | No | 0 | | | | 317 | 621108 | DRP | 60% | 100% | ? | ? | ? | 8 | 2,981,318 | 22,300,262 | ? | ? | ? | Maybe | 0 | 22,300,262 | No | 0 | | | | 318 | 861110 | DRP | 60% | 100% | ? | ? | ? | 8 | 4,133,328 | 30,917,293 | ? | ? | ? | Maybe | 0 | 30,917,293 | | 0 | | | | 319 | 780776 | DRP | 60% | 100% | 7 | 7 | ? | 8 | 3,747,725 | 28,032,982 | 7 | 7 | 7 | Maybe | 0 | 28,032,982 | A CONTRACTOR OF THE PARTY TH | 28,032,982 | 28,032,982 | | | 320 | 657455 | DRP | 60% | 100% | ? | 2 | ? | 8 | 3,155,784 | 23,605,264 | 7 | ? | ? | Maybe | 0 | 23,605,264 | Yes | 23,605,264 | 23,605,264 | | | 321 | 628997 | SECO | 80% | 80% | ? | ? | ? | 8 | 3,220,465 | 24,089,076 | ? | ? | ? | Maybe | 0 | 24,089,076 | Yes | 24,089,076 | 24,089,076 | | | 322 | 366787 | SECO | 80% | 80% | ? | 7 | ? | 8 | 1,877,949 | 14,047,062 | 7 | 7 | ? | Maybe | 0 | 14,047,062 | | 14,047,062 | 14,047,062 | | | 323 | 1453978 | DRP | 60% | 100% | ? | ? | ? | 8 | 6,979,094 | 52,203,626 | 7 | 7 | ? | Maybe | 0 | 52,203,626 | # 23000 C | 52,203,626 | 52,203,626 | | | 324 | 3879874 | SECO | 80% | 80% | ? | 7 | ? | 8 | 18,839,931 | 140,922,683 | 3 | ? | ? | Maybe | 0 | 140,922,683 | | 105,692,012 | | | | 325 | 777544 | DRP | 60% | 100% | ? | 7 | ? | 8 | 3,732,211 | 27,916,940 | ? | 7 | ? | Maybe | 0 | 27,916,940 | Yes | 27,916,940 | 27,916,940 | | | 326 | 1190281 | DRP | 60% | 100% | ? | ? | ? | 8 | 5,713,349 | 42,735,849 | ? | ? | ? | Maybe | 0 | 42,735,849 | The state of s | 28,633,019 | 28,633,019 | | | 327 | 853607 | DRP | 60% | 100% | ? | 7 | ? | 8 | 4,097,314 | | ? | ? | ? | Maybe | 0 | 30,647,906 | 1000000 | 0 | Barrier Barrier | | | 328 | 566249 | DRP | 60% | 100% | ? | 7 | 2 | 8 | 2,717,995 | | 7 | ? | 7 | Maybe | 0 | 20,330,604 | | 20,330,604 | 20,330,604 | | | 329 | 1278582 | DRP | 60% | 100% | ? | ? | ? | 8 | 6,137,194 | | ? | ? | ? | Maybe | 0 | 45,906,208 | . 55,200 | 45,906,208 | 45,906,206 | | | 330 | 416741 | DRP | 80% | 100% | ? | ? | ? | 8 | 2.000.357 | 14,962,669 | ? | ? | ? | Maybe | 0 | 14,962,669 | | 14,962,669 | 14,962,669 | | | 331 | 4130038 | DRP | 60% | 100% | ? | ? | 7 | 8 | 19,824,182 | | ? | ? | 7 | Maybe | 0 | 148,284,884 | 1927 6.7 | 148,284,884 | 148,284,884 | | | 332 | 1566624 | SECO | 80% | 80% | ? | ? | ? | 8 | 8,021,115 | | 7 | 7 | ? | Maybe | 0 | 59,997,939 | 2,000 | 0 | ( | | | 333 | 2929708 | SECO | 80% | 80% | ? | ? | ? | 8 | 15,000,105 | the same of the same of the same of the same of | ? | ? | ? | Maybe | 0 | 112,200,785 | 1/2? | ? | 4 | | | | | | | | | Avgerage He | eight (ft)= | 8.0 | | | | | | Min. Gallons | 228,571,650 | | Min. Gallons | 1,166,222,607 | | | | | | | | | | 10 California (100 | olume (feet^3)> | | 200,784,916 | | | | | Max. Gallone | | 1,501,871,173 | | | 1,166,222,607 | | | | | | | | | | olume (Gallons)> | | > | 1,501,871,173 | | | | | | | | | | | Use These Values- | > | | Mined% | Pores% | | | S10000 (000 N) 56(1) | | | | motera of the second | | | | Volume below | (unknown) | | Volume below | 6300 | | | Longwall> | | LONG | 100% | 80% | | | | | | | | | | | 1 STROVENSIONS | | | | 45/16/44 | | | Secondary> | | SECO | 80% | 80% | | | | | | | | | | | | | | A | | | | e-manufacture (Control of Control | | | 1000000 | 12000 | | | | | | | | | | | | | | | | | Water Volume Below Level Water Volume Below Level | Room And Pillar Mining<br>Denne<br>Typics<br>Ladde | Use These Values—<br>Longwell —><br>Secondary —> | Castlegate #3 (Carbon Fuel #3) in Sub-Seam 3 | | |----------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------| | Alining<br>Dense<br>Typical<br>Ladder | | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | ! | | TRP | LONG | Area (ft*2) 888053 1549789 1790363 890406 390110 873518 1256863 119709 733371 1081544 425075 131869 818244 425075 131869 872871 1657030 274863 111150 8274863 111150 8274863 111150 8274863 111150 8274863 111150 8274863 111150 8274863 111150 8274863 111150 8274863 111150 8274863 111770 324561 177271 17251 8398652 775463 475569 119626 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 47656 | | | 50%<br>45% | Mined%<br>100%<br>80% | · · · · · · · · · · · · · · · · · · · | () | | 100%<br>100%<br>100% | Pores%<br>80% | \$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$00 | | | | | # Poras 100% 100% 100% 100% 100% 100% 100% 100 | i | | | | Coal Min. | i | | | Avgerage Height (ft)= Total Mine Volume (floef:3) Total Mine Volume (Galleris) | Coal Max. 5.4 7.6 8.7 7.7 8.7 7.8 8.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 8.8 7.8 8.8 8.8 7.8 8.8 8.8 7.8 8.8 8.8 8.8 8.8 7.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 | i | | | ume (Gellons)> = | Col. No. 10 | | | | 20 | Guessian Company | | | | 141,355,343 | (Feet * 3) 1,975,717 4,649,307 5,371,089 2,639,340 1,296,396 3,668,776 4,524,059 4,18,982 2,114,300 2,233,086 3,277,456 1,668,784 4,381,184 4,381,184 4,381,184 4,381,710,900 2,180,328 1,180,420 2,180,328 1,180,420 1,885,834 1,043,327 11,856,152 3,577,283 1,080,684 2,572,809 10,816,420 1,885,834 1,043,327 11,856,152 3,928,805 57,753 1,080,690 4,860,884 257,771 1,559,590 6,472,790 1,785,486 270,906 3,577,088 237,771 1,559,590 6,472,790 1,534,717 418,541 178,748 161,977 5,125,588 3,289,204 981,337 3,454,516 1,519,462 873,883 1,118,786 | Block Volume | | | 1,057,337,984 | | Block Volume | | | | Minimum 6.468 6.220 7 5.926 6.116 6.926 6.116 6.926 6.926 6.927 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6.926 6. | Elevation | | | | Maximum Bel5 Bel5 Bel5 Bel5 Bel5 Bel5 Bel5 Bel5 | Elevation | | | | Average 68290 68240 68240 68240 68240 68250 68250 68250 68250 68250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 58250 5825 | Elevation | | | Min. Gallons<br>Max. Gallons<br>Volume below | Flooder | g. | | | 91,980,127 | Gallors Gal | Existing | | | 00 15800 | | Existing | | | Min. Gallons<br>364,648,704 Max. Gallons<br>Volume below | Can Hara Can Can Can Can Can Can Can Can Can Ca | œ. | | | 961,171,357 | Gallons 26,082,612 21,236,262 2,637,042 27,442,441 33,839,960 3,133,982 20,022,486 32,784,294 0 24,515,389 12,018,741 32,845,910 34,286,725 11,685,948 5,898,948 5,898,948 5,898,948 1,898,947 18,399,172 2,618,916 20,381,042 28,382,989 8,127,834 80,906,622 14,106,783 7,804,084 87,189,017 29,387,484 487,189,185 1,905,977 11,844,586 1,343,086 2,216,569 34,481,466 5,331,134 11,365,735 48,416,466 5,331,134 11,365,375 26,736,666 1,343,006 2,026,375 26,736,666 1,343,006 2,026,375 26,736,666 1,343,006 2,026,375 26,736,666 1,343,006 2,026,375 26,736,666 1,343,006 2,026,375 26,736,666 1,343,006 2,026,375 26,736,666 1,343,006 2,026,375 26,736,666 1,343,006 2,026,375 26,736,666 1,343,006 2,026,375 26,736,666 1,343,006 2,026,375 26,736,666 1,343,006 2,026,375 26,838,398,006 24,378,846 7,355,830 25,838,398,006 11,365,501 11,365,501 11,365,501 11,365,501 11,365,501 11,365,501 | | | | 993,689,654 | Gallons Callons Cal | Maximum | | | Min. Gallons<br>854 Max. Gallons<br>Volume below | Can Hold? O No 612 No OA2 No OA2 No OA2 No OA2 No OA4 Yes 960 Yes 960 Yes 961 Yes 961 Yes 971 Yes 961 Yes 972 Yes 983 Yes 973 Yes 974 Yes 975 Yes 977 Yes 978 978 978 978 978 978 978 97 | | | | ons 908,863,461 | 6,664,204 6,664,204 7,442,441 33,839,960 3,133,982 20,002,496 32,764,244 26,965,532 11,665,848 5,866,844 28,965,532 11,665,848 5,866,844 28,965,532 16,309,587 16,891,172 2,618,916 20,361,042 26,108,172 2,618,916 20,361,042 26,108,172 2,618,916 20,361,042 21,108,781 14,833,889 18,744,846 431,989 8,127,838 2,218,559 34,841,945 11,778,583 7,864,084 431,989 8,127,838 2,218,559 34,841,945 11,778,583 11,965,775 26,756,895 11,478,682 3,128,191 11,378,682 3,128,191 11,378,682 3,128,191 11,378,682 3,128,191 13,358,301 11,665,735 48,418,486 5,331,134 11,78,582 3,128,191 13,358,301 11,965,735 48,418,486 5,331,134 11,378,682 3,138,1846 7,355,830,780 11,365,501 11,365,501 6,536,716 4,184,184 | _ | | | 3,461<br>941,181,758 | S. Gallons Callons | 100 | Plate 7 - Spring Canyon #5 Volume Spreadsheet Use These Values---> Room And Pillar Mining Dense Typical Ladder Longwall ---> Secondary ---> | 052000 | 345533 | 17/00/04/19/19 | 42000 | 271225500 | 9172FF | | | | | Block Volume | Block Volume | Elevation | Elevation | Elevation | |------------------|--------|----------------|-------|-----------|---------|-----------|-----------------------|---------------|-----------|--------------|--------------|-----------|-----------|-----------| | Mine | Block | Area (ff*2) | Type | % Mined | % Pores | Coal Min. | Coal Max. | Coal-Avg | Guess Ht. | (Foot * 3) | (Gallons) | Minimum | Maximum | Average | | Spring Canyon #5 | 501 | 817705 | LRP | 45% | 100% | 7.7 | 10.0 | 8.8 | 8.8 | 3,238,112 | 24,221,076 | 5720.0 | 5910.0 | 5800.0 | | (in the D-Seam) | 502 | 414270 | LRP | 45% | 100% | 8.0 | 9.0 | 7.3 | 7.3 | 1,380,877 | 10,179,360 | 5900.0 | 6190.0 | 6060.0 | | | 503 | 594784 | LRP | 45% | 100% | 7.5 | 9.8 | 8.8 | 8.8 | 2,355,345 | 17,617,978 | 6180.0 | 6330.0 | 6250.0 | | | 504 | 614120 | LRP | 45% | 100% | 7.0 | 9.1 | 8.0 | 8.0 | 2,210,832 | 16,537,023 | 6330.0 | 6470.0 | 6400.0 | | | 505 | 184358 | LRP | 45% | 100% | 6.4 | 8.9 | 8.1 | 8.1 | 671,985 | 5,026,447 | 7 | 7 | 6300.0 | | | 508 | 38134 | LRP | 45% | 100% | ? | ? | 7.8 | 7.8 | 126,830 | 948,691 | 7 | 7 | 6200.0 | | | 507 | 174089 | LRP | 45% | 100% | 8.5 | 9.4 | 9.0 | 9.0 | 705,060 | 5,273,852 | 6176.0 | 6240.0 | 6200.0 | | | 508 | 259931 | LRP | 45% | 100% | 8.3 | 10.9 | 9.2 | 9.2 | 1,076,114 | 8,049,335 | 6170.0 | 6440.0 | 6305.0 | | | 509 | 630143 | LONG | 100% | 80% | 8.7 | 9.8 | 9.2 | 9.2 | 4,637,852 | 34,691,137 | 6184.0 | 6290.0 | 6240.0 | | | 510 | 352453 | LRP | 45% | 100% | 8.3 | 9.6 | 8.9 | 8.9 | 1,411,574 | 10,558,576 | 6180.0 | 6300.0 | 6240.0 | | | 511 | 1247375 | LONG | 100% | 80% | 8.2 | 9.8 | 9.0 | 9.0 | 8,981,100 | 67,178,628 | 6254.0 | 6375.0 | 6315.0 | | | 512 | 99394 | LRP | 45% | 100% | 5.8 | 10.8 | 7.0 | 7.0 | 313,091 | 2,341,921 | 6254.0 | 6320.0 | 6290.0 | | | 513 | 354627 | LRP | 45% | 100% | 6.2 | 8.6 | 7.4 | 7.4 | 1,180,908 | 8,833,191 | 6310.0 | 6390.0 | 6350.0 | | | 514 | 1632012 | LONG | 100% | 80% | 6.1 | 10.4 | 7.5 | 7.5 | 9,792,072 | 73,244,699 | 6320.0 | 6450.0 | 6385.0 | | | 515 | 598882 | LRP | 45% | 100% | 6.2 | 7.1 | 6.7 | 6.7 | 1,805,629 | 13,506,107 | 6399.0 | 6460.0 | 6430.0 | | | | | | | | | Avgerage Height (ft)= | | 8.2 | | | | | | | | | | | | | | Total Mine Volu | ıme (feet*3) | >= | 39,867,382 | | | | | | | | | | | | | Total Mine Volu | ıme (Gallons) | > | 2 | 298,208,020 | | | | Pores% 80% 80% 100% 100% Mined% 100% 80% 60% 50% 45% LONG SECO DRP TRP | | VVater Volume | | | Vvater Volume | | | Water Volume | | | |----|---------------|-----------|-----------|---------------|-------------|------------------|--------------|-------------|---------------| | | Selow Level | 200 | 12221 | Below Level | | | Below Level | | | | | 5770 | Existing | Existing | 6400 | | . 20/20/20/20/20 | 6300 | | 180 OR 100 AC | | q | 0001555566 | Minimum | Maximum | Paul 60005 | Minimum | Maximum | E 20048 | Minimum | Maximum | | 0 | Flooded? | Gallons | Gallons | Can Hold? | Gallons | Gallons | Can Hold? | Gallons | Gallons | | ì | 1/37 | 316,230 | 316,230 | Yes | 24,221,076 | 24,221,076 | Yes | 24,221,078 | 24,221,076 | | ĺ | No | 0 | 0 | Yes | 10,179,360 | 10,179,360 | Yes | 10,179,360 | 10,179,360 | | i, | No | 0 | 0 | Yes | 17,617,978 | 17,617,978 | Yes | 17,617,978 | 17,617,978 | | 1 | No | 0 | 0 | 1/27 | 8,268,512 | 8,268,512 | No | 0 | 0 | | j. | No | 0 | 0 | Yes | 5,026,447 | 5,026,447 | 1/2 7 | 2,513,224 | 2,513,224 | | Ė | Yes | 948,691 | 948,691 | Yes | 948,691 | 948,691 | Yes | 948,691 | 948,691 | | Ė | No | 0 | 0 | Yes | 5,273,852 | 5,273,852 | Yos | 5,273,852 | 5,273,852 | | | No | 0 | 0 | Yes | 8,049,335 | 8,049,335 | 1/2 7 | 4,024,688 | 4,024,668 | | Ĺ | No | 0 | 0 | Yes | 34,691,137 | 34,691,137 | Yes | 34,691,137 | 34,691,137 | | | No | 0 | 0 | Yes | 10,558,576 | 10,558,576 | Yes | 10,558,576 | 10,558,576 | | É | No | 0 | 0 | Yes | 67,178,628 | 67,178,628 | 1/27 | 33,589,314 | 33,589,314 | | Ĺ | No | 0 | 0 | Yes | 2,341,921 | 2,341,921 | 1/27 | 1,170,961 | 1,170,961 | | ( | No | 0 | 0 | Yes | 8,833,191 | 8,833,191 | No | 0 | 0 | | į. | No | 0 | 0 | 3/47 | 54,933,524 | 54,933,524 | No | 0 | 0 | | 1 | No | 0 | 0 | No | 0 | 0 | No | 0 | 0 | | | Min. Gallons | 1,264,921 | | Min. Gallons | 258,122,228 | | Min. Gallons | 144,788,835 | | | | Max. Gallons | ·> | 1,264,921 | Max. Gallons | > | 258,122,228 | Max. Gallons | | 144,788,835 | | | Volume below | 5770 | | Volume below | 6400 | | Volume below | 6300 | | Plate 8 - Spring Canyon #1 Volume Spreadsheet Old R+P ORP 53% 100% (Measured on Block 105) | | | | | | | | | | | Block Valume | Block Volume | Elevation | Elevation | Elevation | |----------------------|----------|-------------|--------|---------|----------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|--------------|--------------|-----------|-----------|-----------| | Mine | Block | Area (ft^2) | Type | % Mined | % Pores | Coal Min. | Coal Max. | Coal-Avg | Guess Ht. | (Feet ^ 3) | (Gallons) | Minimum | Maximum | Average | | Spring Can. #1 | 101 | 462617 | OE | 50% | 100% | ? | 7 | 2 | 7.0 | 1,619,160 | 12,111,313 | 7 | 2 | <6300 | | (Sowbelly #17) | 102 | 445400 | OE | 50% | 100% | 7 | 7 | 7 | 7.0 | 1,558,900 | 11,680,572 | 3 | 7 | <6300 | | in Sub-Seam 3 | 103 | 240113 | OE | 50% | 100% | 7 | 7 | 7 | 7.0 | 840,396 | 6,286,158 | 7 | 7 | <6300 | | | 104 | 234337 | OE | 50% | 100% | ? | ? | 2 | 7.0 | 820,180 | 6,134,943 | ? | 7 | <6300 | | | 105 | 768775 | ORP | 53% | 100% | 7 | 7 | 7 | 7.0 | 2,852,155 | 21,334,121 | 7 | 7 | <6300 | | | 106 | 311450 | OE | 50% | 100% | ? | 2 | 2 | 7.0 | 1,090,075 | 8,153,761 | 7 | 7 | <6300 | | | 107 | 1175598 | ORP | 53% | 100% | 7 | 2 | 7 | 7.0 | 4,361,469 | 32,623,785 | 7 | 7 | <6300 | | | 108 | 191718 | OE | 50% | 100% | 7 | 7 | 7 | 7.0 | 671,013 | 5,019,177 | 2 | 7 | <6300 | | | 109 | 1242369 | ORP | 53% | 100% | 2 | 2 | 7 | 7.0 | 4,609,189 | 34,476,734 | 7 | 2 | <6300 | | | 110 | 180735 | OE | 50% | 100% | 2 | 2 | 2 | 7.0 | 632,573 | 4,731,642 | ? | 2 | <8400 | | | 111 | 884237 | ORP | 53% | 100% | 2 | 2 | 7 | 7.0 | 3,280,519 | 24,538,284 | 7 | 7 | <6400 | | | 112 | 422900 | OE | 50% | 100% | 2 | 2 | 2 | 7.0 | 1,480,150 | 11,071,522 | 7 | ? | 6400 | | | 113 | 763801 | ORP | 53% | 100% | 2 | 2 | 2 | 7.0 | 2,833,702 | 21,196,089 | 7 | 7 | <6500 | | | 114 | 146914 | OE | 50% | 100% | 2 | 2 | 7 | 7.0 | 514,199 | 3,846,209 | 7 | 2 | 6450 | | | 115 | 661845 | ORP | 53% | 100% | 7 | 2 | 7 | 7.0 | 2,455,445 | 18,366,728 | 2 | 7 | 6500 | | | 116 | 225511 | OE | 50% | 100% | ? | 2 | 7 | 7.0 | 789,289 | 5,903,878 | 7 | ? | <6300 | | | 117 | 282150 | ORP | 53% | 100% | 2 | ? | 3 | 7.0 | 1.046,777 | 7,829,888 | 2 | ? | <6300 | | | 118 | 295330 | OE | 50% | 100% | 2 | 2 | 7 | 7.0 | 1,033,655 | 7,731,739 | 7 | 7 | <8300 | | | 119 | 1133074 | ORP | 53% | 100% | 2 | ? | 2 | 7.0 | H10012975550 | | 7 | 3 | | | | 120 | 265630 | OE | 50% | 100% | 7 | ? | 7 | 7.0 | 4,203,705 | 31,443,710 | | 7 | 6300 | | | 121 | 1044904 | ORP | 53% | 100% | ? | 2 | 2 | | 929,705 | 6,954,193 | ? | | <6400 | | | 122 | 183460 | OE | 50% | 100% | 7 | 2 | 7 | 7.0 | 3,876,594 | 28,996,922 | ? | ? | <6400 | | | | 527998 | | | | 2 | 2 | 2 | 7.0 | 642,110 | 4,802,983 | 7 | ? | <6400 | | | 123 | | SECO? | 80% | 80% | 7 | 2 | | 7.0 | 2,365,431 | 17,693,424 | ? | ? | <6500 | | | 124 | 1057134 | ORP | 53% | 100% | 2 | ? | 7 | 7.0 | 3,921,967 | 29,336,314 | 7 | 3 | <6500 | | | 125 | 958532 | SECO? | 80% | 80% | 2 | 250 | ? | 7.0 | 4,294,223 | 32,120,791 | ? | ? | 6500 | | | 126 | 133889 | OE | 50% | 100% | 100 | ? | 7 | 7.0 | 468,612 | 3,505,214 | 7 | ? | 6450 | | | 127 | 267499 | ORP | 53% | 100% | ? | 7 | ? | 7.0 | 992,421 | 7,423,311 | 7 | ? | <6500 | | | 128 | 281877 | ORP | 53% | 100% | 7 | ? | 7 | 7.0 | 1,045,764 | 7,822,312 | 7 | ? | <8800 | | | 129 | 1674923 | SECO? | 80% | 80% | ? | ? | ? | 7.0 | 7,503,655 | 56,127,340 | ? | ? | 6600 | | | 130 | 244957 | ORP | 53% | 100% | 7 | ? | 7 | 7.0 | 908,790 | 6,797,753 | 7 | 3 | <6600 | | | 131 | 473783 | OE | 50% | 100% | ? | ? | ? | 7.0 | 1,658,241 | 12,403,639 | 7 | 7 | 6600 | | | 132 | 689760 | ORP | 53% | 100% | ? | ? | 7 | 7.0 | 2,559,010 | 19,141,392 | 7 | ? | <8600 | | | 133 | 208290 | ORP | 53% | 100% | ? | 7 | ? | 7.0 | 772,756 | 5,780,214 | 7 | 7 | <6500 | | | 134 | 706370 | OE | 50% | 100% | ? | 3 | 7 | 7.0 | 2,472,295 | 18,492,767 | 7 | ? | 6500 | | | 135 | 812683 | ORP | 53% | 100% | ? | ? | 3 | 7.0 | 3,015,054 | 22,552,603 | 2 | ? | 6500 | | | 138 | 861904 | ORP | 53% | 100% | ? | 3 | ? | 7.0 | 3,197,664 | 23,918,526 | 7 | ? | <6600 | | | 137 | 503532 | OE | 50% | 100% | ? | ? | 7 | 7.0 | 1,762,362 | 13,182,468 | 7 | 7 | 6600 | | | 138 | 274398 | OE | 50% | 100% | ? | 7 | 7 | 7.0 | 960,393 | 7,183,740 | 7 | ? | <8600 | | | 139 | 1072712 | ORP | 53% | 100% | 7 | 7 | 7 | 7.0 | 3,979,762 | 29,768,616 | 7 | 7 | <8700 | | | 140 | 639405 | ORP | 53% | 100% | ? | 7 | 3 | 7.0 | 2,372,193 | 17,744,000 | 7 | ? | <6700 | | | 141 | 686733 | ORP | 53% | 100% | 7 | 7 | 7 | 7.0 | 2,547,779 | 19,057,390 | 7 | 7 | <6700 | | | 142 | 1553250 | SECO | 80% | 80% | ? | 2 | ? | 7.0 | 6,958,560 | 52,050,029 | ? | 3 | 6650 | | | | | | | | | Avgerage Heigh | nt (ft)= | 7.0 | | | | | | | | | | | | | | A CONTRACT OF THE PARTY | ime (feet*3) | >= | 95,897,887 | | | | | | | | | | | | | Total Mine Volu | ime (Gallons) - | > | ·····> | 717,316,194 | | | | | Use These Values | > | | Mined% | Pores% | | | | | | | | | | | | Longwall> | | LONG | 100% | 80% | | | | | | | | | | | | Secondary> | | SECO | 80% | 80% | | | | | | | | | | | | Room And Pillar Mini | ing | | | | | | | | | | | | | | | | ense | DRP | 60% | 100% | | | | | | | | | | | | | pical | TRP | 50% | 100% | | | | | | | | | | | | 0.00 | dder | LRP | 45% | 100% | | | | | | | | | | | | | ld Entry | OE | 50% | 100% | (Measured on 5 | Block 103) | | | | | | | | | | | Id R+P | ORP | 53% | 100% | /Measured on i | | | | | | | | | | | Water Volume | | | | Water Volume | | | Water Volume | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|--------------------------|--------------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------| | Below Level | | | 1 | Below Level | | | Below Level | | | | (unknown) | Existing | | Existing | 6400 | | | 5600 | | | | A CONTRACTOR OF THE PARTY TH | Minimum | | Maximum | 333970 | Minimum | Maximum | 1000000 | Minimum | Maximum | | Flooded? | Gallons | | Gallons | Can Hold? | Gallons | Gallons | Can Hold? | Gallons | Gallons | | Maybe | | 0 | 12,111,313 | Yes | 12,111,313 | 12,111,313 | Yes | 12,111,313 | 12,111,31 | | Maybe | | 0 | 11,660,572 | Yes | 11,660,572 | 11,660,572 | Yes | 11,660,572 | 11,880,57 | | Maybe | | 0 | 6,286,158 | Yes | 6,286,158 | 6,286,158 | Yes | 6,286,158 | 6,286,158 | | Maybe | | 0 | 6,134,943 | Yes | 6,134,943 | 6,134,943 | Yes | 6,134,943 | 6,134,94 | | Maybe | | 0 | 21,334,121 | Yes | 21,334,121 | 21,334,121 | Yes | 21,334,121 | 21,334,12 | | Maybe | | 0 | 8,153,761 | Yes | 8,153,761 | 8,153,761 | Yes | 8,153,761 | 8,153,76 | | Maybe | | 0 | 32,623,785 | Yes | 32,623,785 | 32,623,785 | Yes | 32,623,785 | 32,623,78 | | Maybe | | 0 | 5,019,177 | Yes | 5,019,177 | 5,019,177 | Yes | 5,019,177 | 5,019,17 | | Maybe | | 0 | 34,476,734 | Yes | 34,476,734 | 34,476,734 | Yes | 34,476,734 | 34,476,73 | | Maybe | | 0 | 4,731,642 | Yes | 4,731,642 | 4,731,642 | Yes | 4,731,642 | 4,731,64 | | Maybe | | 0 | 24,538,284 | Yes | 24,538,284 | 24,538,284 | Yes | 24,538,284 | 24,538,28 | | Maybe | | 0 | 11,071,522 | Half | 5,535,761 | 5,535,761 | Yes | 11,071,522 | 11,071,52 | | Maybe | | 0 | 21,196,089 | No | 0 | 0,000,707 | Yes | 21,196,089 | 21,196,08 | | Maybe | | 0 | 3,846,209 | No | 0 | ٥ | Yes | 3,846,209 | 3,846,20 | | Maybe | | 0 | 18,366,728 | No | 0 | 0 | Yes | 18,386,728 | 18,366,72 | | Maybe | | 0 | 5,903,878 | Yes | 5,903,878 | 5,903,878 | Yes | 5,903,878 | 5,903,87 | | Maybe | | 0 | 7,829,888 | Yes | 7,829,888 | 7,829,888 | Yes | 7,829,888 | 7,829,88 | | Maybe | | 0 | 7,731,739 | Yes | 7,731,739 | 7,731,739 | Yes | 7,731,739 | 7,731,73 | | Maybe | | 0 | 31,443,710 | Yes | 31,443,710 | 31,443,710 | Yes | 31,443,710 | 31,443,71 | | Maybe | | 0 | 6,954,193 | Yes | 6,954,193 | 6,954,193 | Yes | | | | Maybe | | 0 | 28,996,922 | Yes | 28,996,922 | 28,996,922 | Yes | 6,954,193<br>28,996,922 | 6,954,19<br>28,996,92 | | Maybe | | 0 | 4,802,983 | Yes | 4,802,983 | 4,802,983 | Yes | | 4,802,98 | | A COLOR OF THE | | 0 | | No | 4,602,803 | 4,002,003 | Yes | 4,802,983 | | | Maybe | | 0 | 17,693,424 | 0.5557 | 0 | 0 | CALCADO TO | 17,693,424 | 17,693,42 | | Maybe | | 0 | 29,336,314 | No | 0 | 0 | | 29,336,314 | 29,336,31 | | Maybe | | 0 | 32,120,791 | No<br>No | 0 | 0 | Yes | 32,120,791 | 32,120,79 | | Maybe | | 0 | 3,505,214 | 1000000 | 0 | 0 | | 3,505,214 | 3,505,21 | | Maybe | | 0 | 7,423,311 | No<br>No | 0 | 0 | | 7,423,311 | 7,423,31 | | Maybe | | 0 | 7,822,312 | 110.350.0 | 0 | | | 7,822,312 | 7,822,31 | | Maybe | | | 56,127,340 | No | 0 | 0 | | 28,063,670 | 28,063,67 | | Maybe | | 0 | 6,797,753 | No | 0 | 0 | 100000000 | 6,797,753 | 6,797,75 | | Maybe | | | 12,403,639 | No | 0 | 0 | Half | 6,201,819 | 6,201,81 | | Maybe | | 0 | 19,141,392 | No | | 0 | Yes | 19,141,392 | 19,141,39 | | Maybe | | 0 | 5,780,214 | No | 0 | 0 | F 85.52 | 5,780,214 | 5,780,21 | | Maybe | | 200 | 18,492,767 | No | 0 | 0 | Yes | 18,492,767 | 18,492,76 | | Maybe | | 0 | 22,552,603 | No | 0 | 0 | | 22,552,603 | 22,552,60 | | Maybe | | 0 | 23,918,526 | No | (3) | 0 | 10000000 | 23,918,526 | 23,918,52 | | Maybe | | 0 | 13,182,468 | No | 0 | 0 | 2/3 | 8,832,253 | 8,832,25 | | Maybe | | 0 | 7,183,740 | No | 0 | 0 | Yes | 7,183,740 | 7,183,74 | | Maybe | | 0 | 29,768,616 | No | 0 | 0 | 19501 | 0 | | | Maybe | | 0 | 17,744,000 | No | 0 | 0 | No | 0 | | | Maybe<br>Maybe | | 0 | 19,057,390<br>52,050,029 | No<br>No | 0 | 0 | No<br>No | 0 | | | Min. Gallons | | 0 | | Min Gallons | 266,269,565 | | Min. Gallons | 560,080,455 | | | Max. Gallons | > | u | 717,316,194 | Max. Gallons | > | 266,269,565 | AND DESCRIPTION OF THE PARTY | >> | 560,080,45 | | Volume below | (unknown) | | | Volume below | 6400 | | Valume below | 6800 | | ## RECEIVED MAR 3 1 2003 DIV. OF DIL, GAS & MINING #### **APPENDIX C** ### Legal Financial, Compliance and Related Information Annual Report of Officers As submitted to the Utah Department of Commerce Other change in ownership and control information As required under R645-301-110 **CONTENTS** **CHANGE IN OFFICERS** **ENTITY FILE#** 1405411 #### State of Utah DEPARTMENT OF COMMERCE Division of Corporations & Commercial Code REGISTRATION DATE 4/20/98 Refundable Processing Fee \$10.00 Utah Dhe of Com. & Commercial Code & Commercial Code & Commercial Code Registration Information Change Form (This Form Does Not Renew Your Filing) Please make all corrections or changes to registered information on this form. Means of payment are: cash, check, or money order made payable to the "State of Utah." If you are faxing you must include, on a cover sheet, the number of a Visa or MasterCard with the date of expiration. Note: If you are using this form with a reinstatement please do not include the \$10.00 processing fee with the reinstatement fee. ## WHEN REPLACING THE REGISTERED AGENT THE NEW AGENT MUST SIGN. DO NOT USE THIS PORM if you are resigning as a Officer, Director, Trustee, or Registered Agent. You must submit a Letter of Resignation. There is no fee associated with a Letter of Resignation. | 1. Registered name | Castle Gate H | olding Company | | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2. REGISTERED AGENT | UO CUGUGE<br>(Required Lefturmetten) | | | 1 | | | 3. REGISTERED ADDRESS | First | Middle | Last | NEW AGENT MUST | STOR ABOVE | | | STREET ADDRESS ACQUIRE | D | | | | | 4. CITY, STATE & ZIP | REGISTERED AGENT MUST | BE IN UTAH | | ATU | Н | | S. PURPOSE OF THE BUSINE | | | | | to form the same | | 6. ADDRESS OF THE PRINCE | PAL OFFICE IN THE HOME ST | TATE. 1209 | Orange Street | Dela | ware | | | | STREET AD | DRESS 1 | BEET TE | PULINTY | | A Section of the Color C | | רודי | | यार् | | | POSITION TO CHANG | ge Name | | 1 4 47 <sup>1</sup> 5 | address | | | 7. []Add President | J. M. DeMichiei | Q | 99 Corporate | | | | M. C. Action | U. M. Deliterier | | thicum Height | | MD 22 21090 | | President | T 1 lien | | 4 Inverness T | | <b>74</b> | | Kenover as a final production | I. O. LICH | Committee of the commit | lewond | | CO 210 80112 | | e-green | and a second control of the o | and the second | Téhrun | FIADE | OU AP COLL | | 9. [] Add | en e | Annuess | in the state of th | NATE | 2/P | | () Ecnove | ស៊ីខាលីលា សេច នៅ ខ្លាស់ ខាន់ជា នៃ ខេត្ត<br>ទោក ខាង | <u>anv</u> | The second second | AKAJE. | | | [] AcmoyEyenne | A - 7 - 1 | ANDREMS | 100 | | 210 | | II.[]Add | Homes of the first substitution of the second | * . | | | | | 11.00 | | ADDUESS | Company Company | | 20 | | [] Remove | and the second s | · Com | to the second of the second | STATE | The second second | | [] Rankovo | | Afroness | Section 2 | | en Maria de la companya compan | | 1. W.A. 199 (170, 174.0) | | CTY | | dir.Es | 775 | | Under ponsities of perjury and s | s an authorized authority, | I declare that this state | ment of change(s). | as been examined by | me and is, to the | | best of my knowledge and belief | f. true, correct, and comple | 1c. | | without the control of o | * + se = | | By Sharm J. Je | thertuck | Tille Assistan | t Secretary | Date | 3/28/02 | | | | | | | | | | Mall In: 160 Fast | 300 South, 2nd Floor, Box | 146705 | | | | Daniel Communication of the co | Salt Lake | City, Utah 84114 | . 140/03 | | | | W. Arrando | Walk In: 160 Esst. | 300 South, 15 Floor | | | | | | Toll Free: (877) 520 | mation Center: (801)53<br>5-3994 (Utah Residents) | U-4849 | en e | | | Proceedings | Fax: (801) 530-6111 | i de la companya | . , | | | | | Web Site: http://ww | W.commente state ut ne | | | | Date: 04/03/2002 Amount Pald: \$775.00 Inchein/enrohmanie Receipt Number: 537447 Utah Division of Corporations & Commercial Code Box 146705, Salt Lake City, Utah 84114-6705 FROM-RAG AMERICAN COAL #### / RENE | Entity Number | | Entity Type | Renewal Fee | Expiration Date | LATE DATE & FEE | |---------------|-------------|--------------|-------------|-----------------|-----------------| | 1405411-0143 | Corporation | APR - 3 2002 | \$10.00 | | | SUBMIT SEPARATE PAYMENTS & SEARWIOR SEPARATE PAYMENTS & SEARWIOR SUBMIT SEPARATE PAYMENTS & SEARWIOR SUBMIT SEPARATE PAYMENTS & SEARWIOR SUBMIT SEPARATE PAYMENTS & SEARWIOR SEARWING SEAR | | | | | | • | ٠ | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------| | Entity Name: Castle Gate Holding Company | | | | | | | • | | (Name exactly as filed) | | | | | | | | | Signature: | | | | | | , | | | (Required for LLCs & LPs) | | | | | | · · · | • • • | | | | | | • | , . | | | | Nume & Title of Managing Authority (LLC) or General Partne | r (Ll') | | | | | | : | | | | | | | | | | | or and the property of pro | ead the ii | NSTRUCTIONS ( | CAREFULLY | | F_000 | inayapa . S | - 327 .* | | INSTRUCTIONS FO | | | | I: FORM | | | • | | | | | | | | | _ | | ENTITY NUMBER: This is the number issued to another 4 digit number. | o your busi | ness entity of th | idomark, either | a 6 or 7 dig | il number folk | owed by a hy | phen and | | ENTITY TYPE: This is the type of entity the | at you are n | enewing | | | Landaya <b>k</b> in in | | | | The State of the Control Cont | | | | | | | | | RENEWAL FEE: | | | | | | | | | Domestic & Foreign Profit Corporations | \$10.00 | Late Fee | \$10.00 | | • | Q 4 7 4 | • | | Domestic & Foreign Profit Corporations Domestic & Foreign Non-Profit Corporations | \$ 5.00 | Late Fee | \$10.00 | | | 04- | • | | Domestic & Foreign Profit Corporations Domestic & Foreign Non-Profit Corporations Domestic & Foreign LLC | \$ 5.00<br>\$10.00 | Late Fee<br>Late Foo | \$10,00<br>\$10,00 | | • | 04-03 | | | Domestic & Foreign Profit Corporations Domestic & Foreign Non-Profit Corporations Domestic & Foreign LLC Domestic & Foreign LP | \$ 5.00<br>\$10.00<br>\$10.00 | Late Fee<br>Late Foe<br>Late Foe | \$10,00<br>\$10,00<br>\$10,00 | | | 04-03- | | | Domestic & Foreign Profit Corporations Domestic & Foreign Non-Profit Corporations Domestic & Foreign LLC Domestic & Foreign LP DBA | \$ 5.00<br>\$10.00<br>\$10.00<br>\$20.00 | Late Fee<br>Late Foo<br>Late Foo<br>Late Foo | \$10,00<br>\$10,00<br>\$10,00<br>\$10,00 | | | 04-03-02 | | | Domestic & Foreign Profit Corporations Domestic & Foreign Non-Profit Corporations Domestic & Foreign LLC Domostic & Foreign LP DBA Domestic & Foreign LLP | \$ 5.00<br>\$10.00<br>\$10.00<br>\$20.00<br>\$20.00 | Late Fee Late Foe Late Foe Late foe Late Fee | \$10.00<br>\$10.00<br>\$10.00<br>\$ N/A<br>\$ N/A | | 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 19 | ~ | | | Domestic & Foreign Profit Corporations Domestic & Foreign Non-Profit Corporations Domestic & Foreign LLC Domestic & Foreign LP DBA | \$ 5.00<br>\$10.00<br>\$10.00<br>\$20.00 | Late Fee<br>Late Foo<br>Late Foo<br>Late Foo | \$10,00<br>\$10,00<br>\$10,00<br>\$ N/A<br>\$ N/A<br>\$ N/A | | | 2 P0 | | | Domestic & Foreign Profit Corporations Domestic & Foreign Non-Profit Corporations Domestic & Foreign LLC Domestic & Foreign LP DBA Domestic & Foreign LI-P Business Trust Trademark | \$ 5.00<br>\$10.00<br>\$10.00<br>\$20.00<br>\$20.00<br>\$20.00<br>\$20.00 | Late Fee | \$10,00<br>\$10,00<br>\$10,00<br>\$ N/A<br>\$ N/A<br>\$ N/A<br>\$ N/A | | | 2902: | | | Domestic & Foreign Profit Corporations Domestic & Foreign Non-Profit Corporations Domestic & Foreign LLC Domostic & Foreign LP DBA Domestic & Foreign LLP Business Trust | \$ 5.00<br>\$10.00<br>\$10.00<br>\$20.00<br>\$20.00<br>\$20.00<br>\$20.00 | Late Fee | \$10,00<br>\$10,00<br>\$10,00<br>\$ N/A<br>\$ N/A<br>\$ N/A<br>\$ N/A | ) | | 2 P0 | | SIGNATURE: LLCs & LPs must be signed by an authorized party - include the person's printed name & title on the line provided DESIGNATED OFFICE: Domestic LLCs must provide their Designated Office Address, Foreign LLCs must provide their Principal Office Address TIMELY RENEWAL: Pursuant to Urah Law, all renewals must be filed within their legally prescribed time. Failure to do so may result in the loss of all protection and privileges in the State of Utah CHANGES: The Registration Information Change Form is used to make changes to your filing. Download: http://www.commerc.ntah.gov Orders: orders@br.state.ut.us or (801) 530-4849, toll free in-state (877) 526-3994 Anount Sed: Receipt Number OTIFE 837447 C3/03/2002 There is no fee involved with the Registration Information Change Form when it is filed in conjunction with the Annual Report / Renewal form during the entity's renewal period. However, if the Registration Information Change Form is filed at any other time during the year, the \$10.00 non-refundable processing fee is still applicable. Carefully detach Renewal Coupon and submit to the Division of Corporations with the appropriate fee. For multiple renewals please submit separate payments. Payments are accepted by check or money order and should be payable to "State of Utah." DO NOT SEND CASH. Please indicate entity number and/or entity name on check. If you are faxing you must include a cover sheet with the number of a Visa or Master Card and the date of expiration (Fax (801) 530-6438). If you have questions concerning this renewal or would like to check the status of your record please contact the Corporations Information Center ut: (801) 530-4849 or toll free in-state (877) 526-3994 or go to http://www.utah.gov/serv/bes. Forms may be downloaded from our Web site: http://www.commerce.utah.gov # APPENDIX D Mine Maps As required under R645-302-525-270 CONTENTS NONE ### **APPENDIX E** # Other Information In accordance with the requirements of R645-301 and R645-302 **CONTENTS** SUBSTATION AREA RECLAMATION IN SOWBELLY AND HARDSCRABBLE CANYONS ADIT NO. 1 RECLAMATION # Castle Gate Mine 2002 Reclamation During 2002, demolition, backfilling and grading, and revegetation operations were performed on approximately 4.75 acres at the Castle Gate Mine (C/007/004). The reclaimed acres are as follows: 1) 2.0 acres associated with the Adit No. 1 Mine area; 2) 2.0 acres associated with the substation area in Sowbelly Canyon; and 3) 0.75 acres associated with the substation area in Hardscrabble Canyon. The reclamation performed this year finalizes the reclamation work associated with the Castle Gate Mine. During 2002, the permittee applied for phase II bond release on other reclamation work performed in Sowbelly and Hardscrabble Canyon. Phase II bond release was approved by DOGM in January 2003, but OSM approval is still pending. Phase I bond release will be applied for in 2003 for the substation areas in Sowbelly and Hardscrabble Canyons. Adit No. 1 Mine phase I bond release will be applied for at a later time. Once the backfilling and grading was completed at the sites the soils were prepared for seeding by incorporating 2 tons/acre of certified noxious weed free hay into the soil and the establishing of deep gouges for sediment treatment and water harvesting purposes. Shortly after the soil was prepared, seeding was performed and approximately 1.5 tons/acre of certified noxious weed free straw was scattered over the reseeded areas, followed by approximately 500 pounds/acre of hydromulch and tackifier. The main purpose of the hydromulch and tackifier is to bind the straw together whereby a semblance of a mat is created to keep the straw in place and provide further erosion control. It should be noted that hydrolmulch and tackifier were not used at the Adit No. 1 Mine because of snowfall shortly after spreading of the straw. Species List #1 received some substitute species due to the availability of seed. Several species had limited or no availability due to four years of drought and the June 2001 hard frost which affected many vegetation types. All substitute species were approved by the Division. Riparian seed mix (List 5) was used to reseed the area within 20-feet from the edge of the Price River that was disturbed during the removal of the conveyor tubes and supports, and construction of a riprapped lined channel associated with the Adit No.1 Mine. Seed labels showing the species are provided along with hay and straw certifications. Mr. Kelly T. Ellis mentions in his attached letter that riparian plantings will be planted in the spring of 2003. The Permittee believes that it has taken the prudent measures to prepare the soils, reseed and mulch, and create the appropriate water harvesting and sediment treatment structures to enhance revegetation success and minimize the contribution of sediment off site. Now let's hope for an end to the current four-year drought. Stephen B. Ellis Company Erosion Control Systems 1330 Apple, Provo, Utah 84604 801-373-8871 / 801-376-6333 Fax 801-374-1812 6 February, 2003 Mark Nielsen Construction P.O. Box 620 Huntington, Utah 84528 Fax: 435-687-9721 #### Planting To Date for Star Point Mine and Adit Riparian Area RE: Dear Mark: The following information is to document the planting accomplished to date for the referenced areas. | Total plants installed Fall | 2002 | Planting rate | <b>Total Planted</b> | Acres Planted | |-----------------------------|--------------------------|---------------|----------------------|---------------| | Mountain Grassland Are | ea – | | | | | Bitterbrush | (Purshia tridentata) | 100 per acre | 1806 | 18.06 | | Douglas Fir | (Pseudotsuga meniziesii) | 100 per acre | 1806 | 18.06 | | Mountain Mahogany | (Cercocarpus ledifolius) | 100 per acre | 1806 | 18.06 | | Sagebrush Area – | | | | | | Utah Service Berry | (Amelanchier utahensis) | 100 per acre | 2486 | 24.86 | | Mountain Mahogany | (Cercocarpus ledifolius) | 100 per acre | 2486 | 24.86 | The following plants remain for planting in early Spring 2003, or as soon as weather and conditions permit. Most of the areas not planted were North facing slopes which froze and prevented proper planting. | Plants for Spring 2003 p | olanting: | | Quantity | Acres to plant | |--------------------------|--------------------------|--------------|----------|----------------| | Mountain Grassland A | area | | | | | Bitterbrush | (Purshia tridentata) | 100 per acre | 744 | 7.44 | | Douglas Fir | (Pseudotsuga meniziesii) | 100 per acre | 744 | 7.44 | | Mountain Mahogany | (Cercocarpus ledifolius) | 100 per acre | 744 | 7.44 | | Sagebrush Area | | | | | | Utah Service Berry | (Amelanchier utahensis) | 100 per acre | 312 | 3.12 | | Mountain Mahogany | (Cercocarpus ledifolius) | 100 per acre | 312 | 3.12 | ADIT Riparian Area – No plants were planted along the stream. These will be planted Spring 2003. If you have any questions please call (M) 801-376-6333, (O) 801-373-8871, or (Fax) 801-374-1812, Respectfully, Kelly T. Effis General Manager, CPESC CC: J Pappus FROM: Granite Seed Company MIX #: 41358 #### CASTLEGATE ADIT | | | Dorm or | | |------------------------------|-----------|----------------|------------| | ≯ PURE | 4 | GERM + HARD | ORIGIN | | 17.80 FOURWING SALTBUSH | VNS | 45.00 + 0.00 - | TZ NM | | 8.71 WESTERN WHEATGRASS | ROSANA | 92.00 + 0.00 - | WA | | 7.04 WINTERFAT | VNS | 57.00 + 0.00 - | TZ NM | | 6.36 BLUEBUNCH WHEATGRASS | SECAR | 84.00 + 0.00 - | ₩A | | 5.74 BASIN WILDRYE | TRAILHEAD | 93.00 + 0.00 - | TZ WA | | 5.74 THICKSPIKE WHEATGRASS | CRITANA | 93.00 + 0.00 - | MT | | 5.68 INDIAN RICEGRASS | NEZPAR | 94.00 + 0.00 - | TZ ID | | 4.67 SKUNKBRUSH | VNS | 86.00 + 0.00 - | TZ UT | | 4.31 UTAH SERVICEBERRY | VNS | 62.00 + 0.00 - | TZ UT | | 2.97 CURL-LEAF MTN.MAHOGA | VNS | 90.00 + 0.00 - | TZ UT | | 2.92 PURPLE PRAIRIE CLOVER | Kanab | 46.00 + 0.00 - | TZ TX | | 2.87 LEWIS BLUEFLAX | appar | 93.00 + 0.00 - | TZ WA | | 2.24 STEM RUBBER RABBITBRUSH | VNS | 60.00 + 0.00 - | TZ UT | | 2.13 BLUELEAF ASTER | VNS | 63.00 + 0.00 - | TZ UT | | 1.44 YELLOW SWEETCLOVER | VNS | 93.00 + 0.00 - | CN | | 0.61 KENTUCKY BLUEGRASS | GINGER | 89.00 + 0.00 - | WA | | 0.58 MOUNTAIN BIG SAGEBRUSH | VNS | 98.00 + 0.00 - | TZ UT | | 0.55 PALMER PENSTEMON | VNS | 98.00 + 0.00 - | TZ UT | | 0.30 PRAIRIE SAGE | VNS | 84.00 + 4.00 - | <b>C</b> O | | 0.28 SAND DROPSEED | VNS | 93.00 + 0.00 - | TZ CO | 0.04 Other Crop 16.96 Inert Matter 0.06 Weed Seed NET WEIGHT: 50.00 LBS. BULK 30.49 LBS. PLS Date Tested: 06/17/2002 Restricted Weed: None % Hard Seed: 0.01 GUARANTEE: Granite Seed guarantees its seed to be of promised quality and true to name as specified. Should seed prove to be other than labeled, liability shall be limited to replacement or refund of purchase price. > SHIP TO: STEVE ELLIS WILL CALL 1.34 Ae 0 Crk Side B N. EAST FROM: Granite Seed Company 1697 W. 2100 N. Lehi, UT 84043 DUDM UD MIX #: 41358 CASTLEGATE ADIT | | | | אט מאטע | | | |--------------|-------------------------|-----------|----------------|----|-------| | * PURE | | | GERM + HARD | 0 | RIGIN | | 17.80 | FOURWING SALTBUSH | VNS | 45.00 + 0.00 - | TZ | NM | | 8.71 | Western Wheatgrass | Rosana | 92.00 + 0.00 - | | WA | | 7.04 | WINTERFAT | VNS | 57.00 + 0.00 - | TZ | NM | | 6.36 | BLUEBUNCH WHEATGRASS | SECAR | 84.00 + 0.00 - | | WA | | 5.74 | BASIN WILDRYE | TRAILHEAD | 93.00 + 0.00 - | TZ | WA | | 5.74 | THICKSPIKE WHEATGRASS | CRITANA | 93.00 + 0.00 - | | MT | | 5.68 | INDIAN RICEGRASS | NEZPAR | 94.00 + 0.00 - | TZ | ID | | 4.67 | SKLINKBRUSH | VNS | 86.00 + 0.00 - | TZ | UT | | 4.31 | UTAH SERVICEBERRY | VNS | 62.00 + 0.00 - | TZ | UT | | 2.97 | CURL-LEAF MTN. MAHOGA | VNS | 90.00 + 0.00 - | TZ | UT | | 2.92 | PURPLE PRAIRIE CLOVER | Kanab | 46.00 + 0.00 - | TZ | ΤX | | 2.87 | LEWIS BLUEFLAX | appar | 93.00 + 0.00 - | TZ | WA | | 2.24 | STEM RUBBER RABBITBRUSH | VNS | 60.00 + 0.00 - | TZ | UT | | 2.13 | BLUELEAF ASTER | VNS | 63.00 + 0.00 - | TZ | UT | | 1.44 | YELLOW SWEETCLOVER | VNS | 93.00 + 0.00 - | | CN | | 0.61 | KENTUCKY BLUEGRASS | GINGER | 89.00 + 0.00 - | | WA | | <b>0.</b> 58 | MOUNTAIN BIG SAGEBRUSH | VNS | 98.00 + 0.00 - | TZ | UT | | 0.55 | PALMER PENSTEMON | VNS | 98.00 + 0.00 - | TZ | | | 0.30 | PRAIRIE SAGE | VNS | 84.00 + 4.00 - | | CO | | 0.28 | SAND DROPSEED | VNS | 93.00 + 0.00 - | ΤZ | CO | 0.04 Other Crop 16.96 Inert Matter 0.06 Weed Seed NET WEIGHT: 18.52 LBS. BULK 11.29 LBS. PLS Date Tested: 06/17/2002 Restricted Weed: None \* Hard Seed: GUARANTEE: Granite Seed guarantees its seed to be of promised quality and true to name as specified. Should seed prove to be other than labeled, liability shall be limited to replacement or SHIP TO: refund of purchase price. STEVE ELLIS WILL CALL FROM: Granite Seed Company 1697 W. 2100 N. Lehi, UT 84043 DORM OR MIX #: 41359 CASTLE RIP. | * PURE | | | GERM + HARD | 01 | RIGIN | |--------|-----------------------|-----------|----------------|----|-------| | 19.42 | MOUNTAIN BROMEGRASS | Bromar | 96.00 + 0.00 - | TZ | WA | | 15.36 | SLENDER WHEATGRASS | PRYOR | 91.00 + 0.00 - | T2 | WA | | 15.03 | BASIN WILDRYE | TRAILHEAD | 93.00 + 0.00 - | TZ | WA | | 14.56 | STREAMBANK WHEATGRASS | SODAR | 96.00 + 0.00 - | TZ | WA | | 10.97 | PERENNIAL LUPINE | VNS | 33.00 +52.00 - | | HOLL | | 5. 07 | PURPLE PRAIRIE CLOVER | Kanab | 46.00 + 0.00 - | TZ | ΤX | | 5.01 | YELLOW SWEETCLOVER | VNS | 93.00 + 0.00 - | | CN | | 3.70 | BLUELEAF ASTER | VNS | 63.00 + 0.00 - | TZ | UT | | 2.77 | WHITE YARROW | VNS | 84.00 + 0.00 - | TZ | WA | | 1.05 | KENTUCKY BLUEGRASS | GINGER | 89.00 + 0.00 - | | WA | | | | | | | | 0.04 Other Crop 6.96 Inert Matter 0.06 Weed Seed NET WEIGHT: 4.29 LBS. BULK 3.54 LBS. PLS Date Tested: 06/17/2002 Restricted Weed: None \* Hard Seed: 5.77 GUARANTEE: Granite Seed guarantees its seed to be of promised quality and true to name as specified. Should seed prove to be other than labeled, liability shall be limited to replacement or refund of purchase price. SHIP TO: STEVE ELLIS WILL CALL SHIP TO: · (Acre STEVE ELLIS Hand Scrabble #### FROM: Granite Seed Company 1697 W. 2100 N. Lehi, UT 84043 MIX #: 41093 #### CASTLE GATE | OHETE BITT | | | | |------------------------------|------------|-------------------|--------| | | | <b>DORM</b> OR | | | X PURE | | GERM + HARD | ORIGIN | | 14.38 FOURWING SALTBUSH | HIGH ELEV. | 59.00 + 0.00 - TZ | NM | | 3, 22 Western Wheatgrass | Rosana | 92.00 + 0.00 - | WA | | 7.45 WINTERFAT | 11:15<br>- | 57.00 + 0.00 - TZ | . NM | | 6.73 BLUEBUNCH WHEATGRASS | SECAR | 84.70 -3.02 - | WA | | 6.43 BASIN WILDRYE | Magnar | 88.00 + 0.00 - TZ | . WA | | 6.08 THICKSPIKE WHEATGRASS | CRITANA | 93.00 + 0.00 - | MT | | 6.02 INDIAN RICEGRASS | NEZPAR | 94.00 + 0.00 - TZ | ID | | 4.94 SKUNKBRUSH | VNS | 86.00 + 0.00 - TI | . UT | | 4.56 UTAH SERVICEBERRY | VNS | 62.00 + 0.00 - TZ | UT | | 3.14 CURL-LEAF MTN MAHOGANY | VNS | 90.00 + 0.00 - TI | . UT | | 3.08 PURPLE PRAIRIE CLOVER | Kanab | 46.00 + 0.00 - TZ | . TX | | 3.04 LEWIS BLUEFLAX | appar | 93.00 + 0.00 - TI | . WA | | 2.36 STEM RUBBER RABBITBRUSH | VNS | 60.00 + 0.00 - TZ | UT | | 1.75 SHOWY GOLDENEY | VNS | 81.00 + 0.00 - T | Z UT | | 1.52 YELLOW SWEETCLOVER | VNS | 93.00 + 0.00 - | CN | | 0.64 BIG BLUEGRASS | SHERMAN | 89.00 + 0.00 - | WA | | 0.62 MOUNTAIN BIG SAGEBRUSH | VNS | 91.00 + 0.00 - T | Z UT | | 0.58 PALMER PENSTEMON | VNS | 98.00 + 0.00 - T | Z UT | | 0.34 WHITE YARROW | VNS | 84.00 + 0.00 - T | Z WA | | 0.30 SAND DROPSEED | VNS | 95.00 + 0.00 - | CO | | | | | | 0.05 Other Crop 16.72 Inert Matter 0.05 Weed Seed NET WEIGHT: 26.51 LBS. BULK Date Tested: 07/10/2002 Restricted Weed: None % Hard Seed: 0.00 .75 De GUARANTEE: Granite Seed guarantees its seed to be of promised quality and true to name as specified. Should seed prove to be other than labeled, liability shall be limited to replacement or refund of purchase price. SHIP TO: 17.10 LBS. PLS STEVE ELLIS Surbolly 11-15-02 FROM: Granite Seed Company 1697 W. 2100 N. Lehi, UT 84043 MIX #: 41093 CASTLE GATE | | DIOILE GIVE | | | | | | | | |--------|-------------------------|------------------|-------|---|------|------------|----|-------| | | | | | I | ORM | DR | | | | ≯ PURE | | | GERM | | | | | SIGIN | | 14.38 | FOURWING SALTBUSH | HIGH ELEV. | 59.00 | + | 0.00 | - | TZ | ΝM | | 9,22 | WESTERN WHEATGRASS | ROSANA | 92.00 | + | 0.00 | - | | WA | | 7.45 | WINTERFAT | VNS | 57.00 | + | 0.00 | - | TZ | NM | | 6.73 | BLUERUNCH WHEATGRASS | SECAR | 84.00 | + | 0.00 | | | lin. | | 6.43 | BASIN WILDRYS | PH <b>AGN</b> ÁR | 88.00 | ŧ | 0.00 | - | TZ | WA | | 6.0Ê | THICKSPIKE WHEATGRASS | CRITANA | 93.00 | + | 0.00 | - | | MT | | 6.02 | INDIAN RICEGRASS | NEZPAR | 94.00 | + | 0.00 | - | TZ | ID | | 4.94 | SKUNKBRUSH | VNS | 86.00 | + | 0.00 | - | TZ | UT | | 4.56 | UTAH SERVICEBERRY | VNS | 62.00 | + | 0.00 | - | 77 | UT | | 3.14 | CURL-LEAF MTN MAHOGANY | VNS | 90.00 | + | 0.00 | - | TZ | UT | | 3.08 | PURPLE PRAIRIE CLOVER | Kanab | 46.00 | + | 0.00 | - | 77 | TX | | 3.04 | LEWIS BLUEFLAX | APPAR | 93,00 | + | 0.00 | - | T7 | WA | | 2.36 | STEM RUBBER RABBITBRUSH | VNS | 60.00 | + | 0.00 | - | TZ | UT | | 1.75 | SHOWY GOLDENEY | VNS | 81.00 | + | 0.00 | - | T2 | UT | | 1.52 | YELLOW SWEETCLOVER | VNS | 93.00 | + | 0.00 | ı – | | CN | | 0.64 | BIG BLUEGRASS | SHERMAN | 89.00 | ÷ | 0.00 | - | | WA | | 0.62 | MOUNTAIN BIG SAGEBRUSH | VNS | 91.00 | + | 0.00 | - | TZ | UT | | 0.58 | PALMER PENSTEMON | VNS | 98.00 | + | 0.00 | ۱ – | TZ | UT | | 0.34 | WHITE YARROW | VNS | 84.00 | ŧ | 0.00 | ) - | 17 | WA | | 0.30 | SAND DROPSEED | VNS | 95.00 | + | 0.00 | <b>!</b> - | | CO | | | | | | | | | | | 0.05 Other Crop 16.72 Inert Matter 0.05 Weed Seed NET WEIGHT: 35.34 LBS. BULK 22.79 LBS. PLS Date Tested: 07/10/2002 Restricted Weed: None % Hard Seed: GUARANTEE: Granite Seed guarantees its seed to be of promised quality and true to name as specified. Should seed prove to be other than labeled, liability shall be limited to replacement or refund of purchase price. > SHIP TO: STEVE ELLIS FROM: ि Granite Seed Company 1697 W. 2100 N. Lehi, UT 84043 500/2007 74IX #: 41293 👅 #### CASTLE GATE | | 4 | • | <b>⊸</b> . | I | Xorm ( | JR | | | | |--------------|-------------------------|------------|---------------|---|--------|----|-----|-------|---| | * PURE | | | GERM | ÷ | HARD | • | - 0 | RĮGIN | | | 14.38 | FOURWING SALTBUSH | HIGH ELEV. | 59.00 | + | 0.00 | - | TZ | NM ~ | ŕ | | 9.22 | Western Wheatgrass | rosana | 92.00 | + | 0.00 | - | | WA | | | 7.45 | WINTERFAT | VNS | 57.00 | + | 0.00 | - | TZ | NM | | | 6.73 | BLUEBUNCH WHEATGRASS | SECAR | 84.00 | + | 0.00 | - | | WA | | | 6.43 | BASIN WILDRYE | Magnar | 88.00 | ÷ | 0.00 | - | TZ | ₩A | | | 6.08 | THICKSPIKE WHEATGRASS | CRITANA | 93.00 | + | 0.00 | - | | MT | | | | INDIAN RICEGRASS | Nezpar | 94.00 | + | 0.00 | - | TZ | ID | | | | SKUNKBRUSH | VNS | 86.00 | + | 0.00 | - | 77 | UT | | | 4.56 | UTAH SERVICEBERRY | VNS | 62.00 | + | 0.00 | - | TZ | UT | | | | CURL-LEAF MTN MAHOGANY | VNS | 90 <b>.00</b> | ŧ | 0.00 | - | TZ | UT | 1 | | 3.08 | PURPLE PRAIRIE CLOVER | Kanab | 46.00 | + | 0.00 | - | TZ | ΤX | | | 3.04 | LEWIS BLUEFLAX | appar | 93.00 | + | 0.00 | - | TZ | ₩A | | | 2.36 | STEM RUBBER RABBITBRUSH | VNS | <b>60.00</b> | + | 0.00 | - | TZ | UT | | | 1.75 | SHOWY GOLDENEY | VNS | 81.00 | + | 0.00 | - | 77 | UT | | | 1.52 | YELLOW SWEETCLOVER | VNS | 93.00 | ÷ | 0.00 | - | | CN | | | 0.64 | BIG BLUEGRASS | SHERMAN | 89.00 | + | 0.00 | - | | WA | | | 0.62 | MOUNTAIN BIG SAGEBRUSH | VNS | 91.00 | + | 0.00 | - | TZ | UT | | | <b>0.</b> 58 | PALMER PENSTEMON | VNS | 98.00 | ÷ | 0.00 | - | TZ | UT | | | 0.34 | WHITE YARROW | VNS | 84.00 | ÷ | 0.00 | - | 77 | WA | | | <b>0.</b> 30 | SAND DROPSEED | VNS | 95.00 | ŧ | 0.00 | - | | CO | | | | | | | | | | | | | 0.05 Other Crop 16.72 Inert Matter 0.05 Weed Seed NET WEIGHT: 35.34 LBS. BULK 22.79 LBS. PLS Date Tested: 07/10/2002 Restricted Weed: None \* Hard Seed: GUARANTEE: Granite Seed guarantees its seed to be of promised quality and true to mase as specified. Should seed prove to be other than labeled, liability shall be limited to replacement or refund of purchase price. > SHIP TO: STEVE ELLIS # UTAH DEPARTMENT OF AGRICULTURE & FOOD DIVISION OF PLANT INDUSTRY 350 NORTH REDWOOD ROAD **SALT LAKE CITY, UT 84114-6500** # **PHYTOSANITARY CERTIFICATE** 1578 #### HAY OR STRAW INSPÉCTION | FREE FRO | OM: 🛎 NOXIOU | US WEEDS | ound to be: | S WEEDS | | |-------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | The hay<br>See ren | y or straw described<br>narks. | below does not | | lfication standards for Utah. | | | DATE INSPE | ECTED 8-6-02 | FIELD LO | | | | | <b>APPLICANT</b> | Rex Larsen | | | FIELD NA | ME Rex Larsen | | ADDRESS . | | W. Spanish Fo | ork, Utah * 84660 | PHO | NE NO. 798-2514 | | PRODUCT | Alfalfa Hay & | Straw | | NUMBER OF BA | | | GROWN BY | Same | | 9.1 | BALE TY | PE • SB | | | | | | COU | NTY | | | | | | | | | NAME AND | Address of Consign | 1EE | | | 14. J. | | <del></del> | <del></del> | | *. : | | | | TRAILER O | R TRUCK LICENSE NUM | BER | 11.4 | | TATE | | | | | | | | | | | | | | | | | | | | | | | | | | | | 10 (10 mm) 10 mm 1 | | | | | | | The second secon | | | | | | | 32 | | Tags | \$ | | | | | | Tags<br>Mileage | \$ | - Fr | | | - <u></u> 2 | | Tags<br>Mileage<br>Fee | \$\$\$\$.63<br>\$_25.00 | – Fro | om: | To: | 32. | | Tags<br>Mileage<br>Fee<br>Total | \$\$_8.63<br>\$_25.00<br>\$_33.63 | – Fro | om:ay Tag Numbers | To: | - <u></u> 2 | | Tags<br>Mileage<br>Fee<br>Total | \$\$<br>\$8.63<br>\$\$<br>\$\$ | - Fr<br>- Ha | om:<br>ay Tag Numbers<br>August 20, 2002<br>Date Issued | To:Signatu | re of Inspector | | Tags Mileage Fee Total Receipt No liabili | \$\$<br>\$8.63<br>\$\$<br>\$\$ | From Ha | om:<br>ay Tag Numbers<br>August 20, 2002<br>Date Issued | To:Signaturer to any officer or represen | re of Inspector | | Tags Mileage Fee Total Receipt No liabili | \$ 8.63 \$ 25.00 \$ 33.63 # | From Ha | om:<br>ay Tag Numbers<br>August 20, 2002<br>Date Issued | To:Signaturer to any officer or represen | re of Inspector | | Tags Mileage Fee Total Receipt No liabili | \$ | From Haran Departments of SB Small Red LB Large Red | om:ay Tag Numbers August 20, 2002 Date Issued nt of Agriculture & Food ctangular Bale ctangular Bale | To:Signaturer to any officer or represen | re of Inspector | | Tags Mileage Fee Total Receipt No liabili | \$ 8.63 \$ 25.00 \$ 33.63 # | - From Haran Baran | om:ay Tag Numbers August 20, 2002 Date Issued nt of Agriculture & Food | To:Signaturer to any officer or represen | re of Inspector | | Tags Mileage Fee Total Receipt No liabili | \$ 8.63 \$ 25.00 \$ 33.63 # | - From Haran Services Services Control of the Large Records | om:ay Tag Numbers August 20, 2002 Date Issued Int of Agriculture & Food Interpolar Bale | To:Signaturer to any officer or represen | re of Inspector | #### **UTAH DEPARTMENT OF AGRICULTURE & FOOD** DIVISION OF PLANT INDUSTRY 350 NORTH REDWOOD ROAD PO BOX 146500 **SALT LAKE CITY, UT 84114-6500** 2407 # **PHYTOSANITARY CERTIFICATE** #### HAY OR STRAW INSPECTION This is to certify that the hay or straw described below has been inspected according to appropriate procedures by a duly authorized inspector of the State of Utah and found to be: | RREE FROM | M: 🗵 NOXIOUS V | VEEDSF | REGIONAL NOXIOUS | WEEDS | | |-------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------|------------------|-----------------|----------------| | The hay or straw described below does not meet noxious weed certification standards for Utah. See remarks. | | | | | | | DATE INSPEC | TEDF | IELD LOCATION | Nephi | | | | APPLICANT_ | Randy Greenhalgh | | | FIELD NAME | Greenhalgh | | ADDRESS | LOO Book Combon Char | | 84648 | PHONE NO. | (435) 623-0845 | | PRODUCT | Alfalfa Hay | | | NUMBER OF BALES | 117 | | GROWN BY | Same | | | | | | ADDRESS | | | | COUNTY | Juab | | ADDRESSCOUNTY | | | | | | | | | | | | | | TRALER OR | TRUCK LICENSE NUMBER | | | STATE | 1 | | CERTIFICATE IS VALID FOR 1 2 3 4 5 6 7 8 9 10 LOADS (Contract Loads only) | | | | | | | REMARKS OR ADDITIONAL DECLARATIONS Alfalfa Hay meets requirements of Utah Noxious Weed | | | | | | | Free Forage Program. | | | | | | | | | | | | | | | | | | | | | | | | | | | | <del></del> | · · · · · · · · · · · · · · · · · · · | | <u></u> | | | | | | | | | | | | | | | | | | Tags \$_ | | From: | | _ To: | | | Mileage \$_ | 1.83 | Hay Tag Numbers | | | | | | 25.00 | , | | · | • | | Total \$_ | 26.83 | September 5, 2 | 002 | Tom | Den | | Receipt \$_ | | Date Issued | d | Signature of I | nspector | No liability shall attach to the Utah Department of Agriculture & Food or to any officer or representative of the Department with respect to this certificate. \* Bale Type: SB Small Rectangular Bale LB Large Rectangular Bale LR Large Round Bales SR Small Round Bales AG439(7/01)